Skip to main content
Log in

Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Among 16 essential elements of higher plants, Ca2+ and B have been termed as apoplastic elements. This is mainly because of their localization in cell walls, however, it has turned to be highly likely that these two elements significantly contribute to maintain the integrity of cell walls through binding to pectic polysaccharides.

Boron in cell walls exclusively forms a complex with rhamnogalacturonan II (RG-II), and the B-RG-II complex is ubiquitous in higher plants. Analysis of the structure of the B-RG-II complex revealed that the complex contains two molecules boric acid, two molecules Ca2+ and two chains of monomeric RG-II. This result indicates that pectic chains are cross-linked covalently with boric acid at their RG-II regions. The complex was reconstitutedin vitro only by mixing monomeric RG-II and boric acid, however, the complex decomposed spontaneously unless Ca2+ was supplemented. Furthermore, the native complex decomposed when it was incubated withtrans-1,2-diaminocyclohexane-N, N, N′, N′-tetraacetic acid (CDTA) which chelates Ca2+.

When radish root cell walls were washed with a buffered 1.5% (w/v) sodium dodesyl sulfate (SDS) solution (pH 6.5), 96%, 13% and 6% of Ca2+, B and pectic polysaccharides of the cell walls, respectively, were released and the cell wall swelled twice. Subsequent extraction with 50 mM CDTA (pH 6.5) of the SDS-washed cell walls further released 4%, 80% and 61% of Ca2+, B and pectic polysaccharides, respectively. Pectinase hydrolysis of the SDS-treated cell walls yielded a B-RG-II complex and almost all the remaining Ca2+ was recovered in the complex. This result suggests that cell-wall bound Ca2+ is divided into at least two fractions, one anchors the CDTA-soluble pectic polysaccharides into cell walls together with B, and the other may control the properties of the pectic gel.

These studies demonstrate that B functions to retain CDTA-soluble pectic polysaccharides in cell walls through its binding to the RG-II regions in collaboration with Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDTA:

trans-1,2-diaminocyclohexane-N, N, N′, N′-tetraacetic acid

RG-II:

mamnogalacturonan II

SDS:

sodium dodesyl sulfate

References

  • Bowen, H.J.M. 1966. Trace Elements in Biochemistry, Academic Press, London, pp. 61–84.

    Google Scholar 

  • Bush, D.S. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol.46: 95–122.

    Article  CAS  Google Scholar 

  • Da Silva, P.G.P. 1962. On the possibility of substitution of strontium for calcium in maize plants. Agronomia Lusitana24: 133–164.

    Google Scholar 

  • Darvill, A.G., McNeil, M. andAlbersheim, P. 1978. Structure of plant cell walls. VIII. A new pectic polysaccharide. Plant Physiol.62: 418–422.

    PubMed  CAS  Google Scholar 

  • Demarty, M., Morvan, C. andThellier, M. 1984. Calcium and the cell wall. Plant Cell Environ.7: 441–448.

    Article  CAS  Google Scholar 

  • Duff, R.B. 1965. The occurrence of apiose inLemna (Duck-weed) and other Angiosperms. Biochem. J.94: 768–772.

    PubMed  CAS  Google Scholar 

  • Freshour, G., Clay, R.P., Fuller, M.S., Albersheim, P., Darvill, A.G. andHahn, M.G. 1996. Developmental and tissue-specific structural alterations of the cell-wall polysac-charides ofArabidopsis thaliana roots. Plant Physiol.110: 1413–1429.

    PubMed  CAS  Google Scholar 

  • Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol.37: 165–186.

    Article  CAS  Google Scholar 

  • Grignon, C. andSentenac, H. 1991. pH and ionic conditions in the apoplast. Annu. Rev. Plant Physiol. Plant Mol. Biol.42: 103–128.

    Article  CAS  Google Scholar 

  • Hart, D.A. andKindel, P.K. 1970. Isolation and partial characterization of apiogalacturonans from the cell wall ofLemna minor. Biochem. J.116: 569–579.

    PubMed  CAS  Google Scholar 

  • Haug, A. andSmidsrød, O. 1970. Selectivity of some anionic polymers for divalent metal ions. Acta Chem. Scand.24: 843–854.

    Article  CAS  Google Scholar 

  • Henderson, W.G., How, M.J., Kennedy, G.R. andMooney, E.F. 1973. The interconversion of aqueous boron species and the interaction of borate with diols: A11B N. M.R. study. Carbohydr. Res.28: 1–12.

    Article  CAS  Google Scholar 

  • Hirsch, A.M. andTorrey, J.G. 1980. Ultrastructural changes in sunflower root cells in relation to boron deficiency and added auxin. Can. J. Bot.58: 856–866.

    CAS  Google Scholar 

  • Hu, H. andBrown, P.H. 1994. Localization of boron in cell walls of squash and tobacco and its association with pectin. Evidence for a structural role of boron in the cell wall. Plant Physiol.105: 681–689.

    PubMed  CAS  Google Scholar 

  • Hu, H., Brown, P.H. andLabavitch, J.M. 1996. Species variability in boron requirement is correlated with cell wall pectin. J. Exp. Bot.47: 227–232.

    CAS  Google Scholar 

  • Ishii, T. andMatsunaga, T. 1996. Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr. Res.284: 1–9.

    Article  CAS  Google Scholar 

  • Jarvis, M.C. 1982. The proportion of calcium-bound pectin in plant cell walls. Planta154: 344–346.

    Article  CAS  Google Scholar 

  • Jarvis, M.C. 1984. Structure and properties of pectin gels in plant cell walls. Plant Cell Environ.7: 153–164.

    CAS  Google Scholar 

  • Kaneko, S., Ishii, T. andMatsunaga, T. 1997. A boron-rhamnogalacturonan-II complex from bamboo shoot cell walls. Phytochemistry44: 243–248.

    Article  CAS  Google Scholar 

  • Kirkby, E.A. andPilbeam, D.J. 1984. Calcium as a plant nutrient. Plant Cell Environ.7: 397–405.

    Article  CAS  Google Scholar 

  • Knox, J.P., Linstead, P.J., King, J., Cooper, C. andRoberts, K. 1990. Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta181: 512–521.

    Article  CAS  Google Scholar 

  • Kobayashi, M., Kawaguchi, S., Takasaki, M., Miyagawa, I., Takabe, K. andMatoh, T. 1997a. A borate-rhamnogalacturonan II complex in germinating pollen tubes of lily (Lilium longiflorum).In T. Andoet al.., eds., Plant Nutrition for Sustainable Food Production and Environment. Kluwer Academic Publishers, Netherlands, pp. 89–90.

    Google Scholar 

  • Kobayashi, M., Matoh, T. andAzuma, J. 1995. Structure and glycosyl composition of the boron-polysaccharide complex of radish roots. Plant Cell Physiol.36S: 139.

    Google Scholar 

  • Kobayashi, M., Matoh, T. andAzuma, J. 1996. Two chains of rhamnogalacturonan II are cross-linked by boratediol ester bonds in higher plant cell walls. Plant Physiol.110: 1017–1020.

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., Nakagawa, H., Asaka, T., and Matoh, T. 1998. Cross-linkage in the rhamnogalacturonan II regions both with boric acid and calcium ion anchors pectic network in cell walls. Plant Physiol. (in press)

  • Kobayashi, M., Ohno, K. andMatoh, T. 1997b. Boron nutrition of cultured tobacco BY-2 cells. II. Characterization of the boron-polysaccharide complex. Plant Cell Physiol.38: 676–683.

    CAS  Google Scholar 

  • Kouchi, H. andKumazawa, K. 1975. Anatomical responses of root tips to boron deficiency II. Effect of boron deficiency on cellular growth and development in root tips. Soil Sci. Plant Nutr.21: 137–150.

    CAS  Google Scholar 

  • Loomis, W.D. andDurst, R.W. 1992. Chemistry and biology of boron. BioFactors3: 229–239.

    PubMed  CAS  Google Scholar 

  • Matoh, T. 1997. Boron in plant cell walls. Plant and Soil193: 59–70.

    Article  CAS  Google Scholar 

  • Matoh, T., Ishigaki, K., Mizutani, M., Matsunaga, W. andTakabe, K. 1992. Boron nutrition of cultured tobacco BY-2 cells. I. Requirement for and intracellular localization of boron and selection of cells that tolerate low levels of boron. Plant Cell Physiol.33: 1135–1141.

    CAS  Google Scholar 

  • Matoh, T., Ishigaki, K., Ohno, K. andAzuma, J. 1993. Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant Cell Physiol.34: 639–642.

    CAS  Google Scholar 

  • Matoh, T., Kawaguchi, S. andKobayashi, M. 1996. Ubiquity of a borate-rhamnogalacturonan II complex in the cell walls of higher plants. Plant Cell Physiol.37: 636–640.

    CAS  Google Scholar 

  • Matoh, T., Takasaki, M., Kawaguchi, S. and Kobayashi, M. 1998. Immunocytochemistry of rhamnogalacturonan II in cell walls of higher plant. Plant Cell Physiol. (in Press).

  • Matsunaga, T., Ishii, T. andWatanabe-Oda, H. 1997. HPLC/ICP-MS study of metals bound to borate-rhamnogalacturonan-II from plant cell walls.In T. Andoet al., eds., Plant Nutrition for Sustainable Food Production and Environment. Kluwer Academic Publishers. Netherlands, pp. 81–82.

    Google Scholar 

  • McCann, M.C. andRoberts, K. 1991. Architecture of the primary cell wall.InC.W. Lloyd, ed., The Cytoskeletal Basis of Plant Growth and Form, Academic Press, London, pp. 109–129.

    Google Scholar 

  • McNeil, M., Darvill, A.G., Fry, S.C. andAlbersheim, P. 1984. Structure and function of the primary cell walls of plants. Annu. Rev. Biochem.53: 625–663.

    Article  PubMed  CAS  Google Scholar 

  • Nye, P.H. andTinker, P.B. 1977. Solute interchange between solid, liquid and gas phases in the soil.In Solute Movement in the Soil-Root System, University of California Press, California, pp. 33–68.

    Google Scholar 

  • O'Neill, M.A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A.G. andAlbersheim, P. 1996. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cells, forms a dimer that is covalently cross-linked by a borate ester. J. Biol. Chem.271: 22923–22930.

    Article  PubMed  Google Scholar 

  • Pellerin, P., Doco, T., Vidal, S., Williams, P., Brillouet, J. -M. andO'Neill, M.A. 1996. Structural characterization of red wine rhamnogalacturonan II. Carbohydr. Res.290: 183–197.

    Article  PubMed  CAS  Google Scholar 

  • Puvanesarajah, V., Darvill, A.G. andAlbersheim, P. 1991. Structural characterization of two oligosaccharide fragments formed by the selective cleavage of rhamnogalacturonan II: evidence for the anomeric configuration and attachment sites of apiose and 3-deoxy-2-heptulosaric acid. Carbohydr. Res.218: 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, K. 1990. Structures at the plant cell surface. Curr. Opinion Cell Biol.2: 920–928.

    Article  PubMed  CAS  Google Scholar 

  • Schmucker, T. 1933. Zur Blütenbiologie Tropischer Nymphaea-Arten. II. (Bor als entscheidender faktor.). Planta18: 641–650.

    Article  CAS  Google Scholar 

  • Sentenac, H. andGrignon, C. 1981. A model for predicting ionic equilibrium concentrations in cell walls. Plant Physiol.68: 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Shea,E.M., Gilbeaut, D.M. andCarpita, N.C. 1989. Structural analysis of the cell walls regenerated by carrot protoplasts. Planta179: 293–308.

    Article  CAS  Google Scholar 

  • Shedletzky, E., Shmuel, M., Delmer, D.P. andLamport, D.T.A. 1990. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network. Plant Physiol.94: 980–987.

    PubMed  CAS  Google Scholar 

  • Skok, J. 1958. The role of boron in the plant cell.In C.A. Lamb, O.G. Bentley and J.M. Beattie, eds., Trace Elements. Academic Press, London, pp. 227–263.

    Google Scholar 

  • Smith, M.E. 1944. The role of boron in plant metabolism. 1. Boron in relation to the absorption and solubility of calcium. Aust. J. Exp. Biol. Med. Sci.22: 257–263.

    CAS  Google Scholar 

  • Sommer, A.L. andLipman, C.B. 1926. Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiol.1: 231–249.

    PubMed  CAS  Google Scholar 

  • Spurr, A.R. 1957. The effect of boron on cell-wall structure in celery. Amer. J. Bot.44: 637–650.

    Article  CAS  Google Scholar 

  • Stevenson, T.T., Darvill, A.G. andAlbersheim, P. 1988. 3-Deoxy-d-lyxo-2-heptulosaric acid, a component of the plant cell-wall polysaccharide rhamnogalacturonan-II. Carbohydr. Res.179: 269–288.

    Article  CAS  Google Scholar 

  • Thomas, J.R., Darvill, A.G. andAlbersheim, P. 1989. Isolation and structural characterization of the pectic polysaccharide rhamnogalacturonan II from wall of suspension-cultured rice cells. Carbohydr. Res.185: 261–277.

    Article  CAS  Google Scholar 

  • Wallace, A., Frolich, E. andLunt, O.R. 1966. Calcium requirements of higher plants. Nature209: 634.

    Article  CAS  Google Scholar 

  • Warington, K. 1923. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot.37; 629–672.

    Google Scholar 

  • Williams, M.N.V., Freshour, G., Darvill, A.G., Albersheim, P. andHahn, M.G. 1996. An antibody Fab selected from a recombinant phage display libray detects deesterified pectic polysaccharide rhamnogalacturonan II in plant cells. Plant Cell8: 673–685.

    Article  PubMed  CAS  Google Scholar 

  • Yamanouchi, M. 1971. The role of boron in higher plants I. The relations between boron and calcium or the pectic substance in plants. J. Soil Sci. Manure Jpn.42: 207–213.

    CAS  Google Scholar 

  • Yamauchi, T., Hara, T. andSonoda, Y. 1986. Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall. Plant Cell Physiol.27: 729–732.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matoh, T., Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111, 179–190 (1998). https://doi.org/10.1007/BF02507164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02507164

Key words

Navigation