Skip to main content
Log in

Ideal weights: Asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Sharp inequalities between weight bounds (from the doubling, Ap, and reverse Hölder conditions) and the BMO norm are obtained when the former are near their optimal values. In particular, the BMO norm of the logarithm of a weight is controlled by the square root of the logarithm of its A bound. These estimates lead to a systematic development of asymptotically sharp higher integrability results for reverse Hölder weights and extend Coifman and Fefferman's formulation of the A condition as an equivalence relation on doubling measures to the setting in which all bounds become optimal over small scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beurling, A. and Ahlfors, L. (1956). The boundary correspondence under quasiconformal mappings,Acta Math.,96, 125–142.

    Article  MATH  MathSciNet  Google Scholar 

  2. Buckley, S.M. (1993). Estimates for operator norms on weighted spaces and reverse Jensen inequalities,Trans. Amer. Math. Soc.,340, 253–272.

    Article  MATH  MathSciNet  Google Scholar 

  3. Caffarelli, L., Fabes, E., Mortola, S., and Salsa, S. (1981). Boundary behavior of non-negative solutions of elliptic operators in divergence form,Indiana U. Math. J.,30, 621–640.

    Article  MATH  MathSciNet  Google Scholar 

  4. Carleson, L. (1967). On mappings, conformal at the boundary,J. Analyse Math.,19, 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  5. Carleson, L. (1981). BMO—10 years' development,18th Scandanavian Congress of Mathematicians (Aarhus, 1980), Progress in Mathematics,11, Birkhäuser, 3–21.

  6. Chandrasekharan, K. (1968)Introduction to Analytic Number Theory, Grund. der math. Wiss.,148, Springer-Verlag, New York, NY.

    MATH  Google Scholar 

  7. Coifman, R.R. and Fefferman, C. (1974). Weighted norm inequalities for maximal functions and singular integrals,Studia Math.,51, 241–250.

    MATH  MathSciNet  Google Scholar 

  8. Dahlberg, B. (1977) On estimates for harmonic measure,Arch. Rat. Mech. Anal.,65, 272–288.

    Article  MathSciNet  Google Scholar 

  9. Fefferman, C. and Muckenhoupt, B. (1974) Two nonequivalent conditions for weight functions,Proc. Amer. Math. Soc.,45, 99–104.

    Article  MATH  MathSciNet  Google Scholar 

  10. Fefferman, R., Kenig, C.E., and Pipher, J. (1991). The theory of weights and the Dirichlet problem for elliptic equations,Ann. of Math.,134(2), 65–124.

    Article  MATH  MathSciNet  Google Scholar 

  11. García-Cuerva, J. and Rubio de Francia, J.L. (1985).Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam and New York, NY.

    MATH  Google Scholar 

  12. Gehring, F.W. (1973). TheL p-integrability of the partial derivatives of a quasiconformal mapping,Acta Math.,130, 265–277.

    Article  MATH  MathSciNet  Google Scholar 

  13. Hardy, G.H., Littlewood, J.E., and Pólya, G. (1934).Inequalities, Cambridge University Press, Cambridge.

    Google Scholar 

  14. Hruŝĉev, S.V. (1984). A description of weights satisfying theA condition of Muckenhoupt,Proc. Amer. Math. Soc.,90, 253–257.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hunt, R., Muckenhoupt, B., and Wheeden, R. (1973). Weighted norm inequalities for the conjugate function and Hilbert transform,Trans. Amer. Math. Soc.,176, 227–251.

    Article  MATH  MathSciNet  Google Scholar 

  16. Jerison, D., and Kenig, C.E. (1982). The logarithm of the Poisson kernel for aC 1 domain has vanishing mean oscillation,Trans. Amer. Math. Soc.,176, 781–794.

    Article  MathSciNet  Google Scholar 

  17. John, F. (1965). Quasi-isometric mappings,Seminari 1962/63, Instituto Nazionali di Alta Matematica, 462–473.

  18. John, F. and Nirenberg, L. (1961). On functions of bounded mean oscillation,Comm. Pure Appl. Math.,14, 415–426.

    MATH  MathSciNet  Google Scholar 

  19. Kenig, C.E. (1994).Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conf. Ser. in Math.,83, American Math. Society, Providence, RI.

    MATH  Google Scholar 

  20. Kenig, C.E. and Toro, T. (1997). Harmonic measure on locally flat domains,Duke Math. J.,87, 509–551.

    Article  MATH  MathSciNet  Google Scholar 

  21. Kinnunen, J. (1994). Sharp results on reverse Hölder inequalities,Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes,95.

  22. Korey, M.B. (1995). Ideal weights: doubling and absolute continuity with asymptotically optimal bounds, Ph.D. Thesis, University of Chicago, Illinois.

    Google Scholar 

  23. Korey, M.B. (1998). Carleson conditions for asymptotic weights,Trans. Amer. Math. Soc.,350, 2049–2069.

    Article  MATH  MathSciNet  Google Scholar 

  24. Moser, J. (1961). On Harnack's theorem for elliptic partial differential equations,Comm. Pure Appl. Math.,14, 577–591.

    MATH  MathSciNet  Google Scholar 

  25. Muckenhoupt, B. (1972). Weighted norm inequalities for the Hardy maximal function,Trans. Amer. Math. Soc.,165, 207–226.

    Article  MATH  MathSciNet  Google Scholar 

  26. Muckenhoupt, B. (1974). The equivalence of two conditions for weight functions,Studia Math.,49, 101–106

    MATH  MathSciNet  Google Scholar 

  27. Muckenhoupt, B. and Wheeden, R. (1976). Weighted bounded mean oscillation and the Hilbert transform,Studia Math.,54, 221–237.

    MATH  MathSciNet  Google Scholar 

  28. Neri, U. (1977). Some properties of functions with bounded mean oscillation,Studia Math.,61, 63–75.

    MATH  MathSciNet  Google Scholar 

  29. Politis, A. (1995). Sharp results on the relation between weight spaces and BMO, Ph.D. Thesis, University of Chicago, Illinois.

    Google Scholar 

  30. Reimann, H.M. and Rychener, T. (1975) Funktionen beschränkter mittlerer Oszillation.Lecture Notes in Math.,487, Springer-Verlag, Berlin and New York, NY.

    MATH  Google Scholar 

  31. Sarason, D. (1975). Functions of vanishing mean oscillation,Trans. Amer. Math. Soc.,207, 391–405.

    Article  MATH  MathSciNet  Google Scholar 

  32. Stein, E.M. (1993).Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  33. Strömberg, J.-O. (1979). Bounded mean oscillation with Orlicz norms and duality of Hardy spaces,Indiana U. Math. J.,28, 511–544.

    Article  Google Scholar 

  34. Strömberg, J.-O. and Torchinsky, A. (1980). Weights, sharp maximal functions and Hardy spaces,Bull. Amer. Math. Soc.,3, 1053–1056.

    Article  MATH  MathSciNet  Google Scholar 

  35. Strömberg, J.-O. and Torchinsky, A. (1989). Weighted Hardy Spaces,Lecture Notes in Math. 1381, Springer-Verlag, Berlin and New York, NY.

    MATH  Google Scholar 

  36. Wik, I. (1990). Reverse Hölder inequalities with constant close to 1,Ricerche Mat.,39, 151–157.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oh! the little more, and how much it is! And the little less, and what worlds away!

Acknowledgements and Notes. Supported by the Max-Planck-Gesellschaft. This work is a revised form of part of the author's dissertation, which was written under Professor Carlos E. Kenig at the University of Chicago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korey, M.B. Ideal weights: Asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation. The Journal of Fourier Analysis and Applications 4, 491–519 (1998). https://doi.org/10.1007/BF02498222

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02498222

Math Subject Classifications

Keywords and Phrases

Navigation