Skip to main content
Log in

On additive inequalities for intermediate derivatives of functions given on a finite interval

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We present a general scheme for deducing additive inequalities of Landau-Hadamard type. As a consequence, we prove several new inequalities for the norms of intermediate derivatives of functions given on a finite interval with an exact constant with the norm of a function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Landau, “Einige Ungleichungen für zweimal differenzierbare Functionen,” Proc. London Math. Soc., 13, 43–49 (1913).

    Article  Google Scholar 

  2. J. Hadamard, “Sur le module maximum d’une fonction et ses derivées,” C.R. Soc. Math. France, 41, 68–72 (1914).

    Google Scholar 

  3. V. N. Gabushin, “Inequalities for norms of functions and their derivatives in the metrics of L p,” Mat. Zametki, 3, 291–298 (1967).

    Google Scholar 

  4. S. Karlin, “Oscillatory perfect splines and related extremal problems,” in: S. Karlin et al. (Editors), Studies in Spline Functions and Approximation Theory, Academic Press, New York (1976), pp. 371–460.

    Google Scholar 

  5. C. K. Chui and P. W. Smith, “A note on Landau’s problem for bounded intervals,” Am. Math. Monthly, 82, 927–929 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Pinkus, “Some extremal properties of perfect splines and the pointwise Landau problem on a finite interval,” J. Approx. Theory, 23, 37–64 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  7. V. I. Burenkov, “On exact constants in inequalities for norms of intermediate derivatives on a finite interval,” Tr. Mat. Inst. Akad. Nauk SSSR, 156, 22–29 (1980).

    MATH  MathSciNet  Google Scholar 

  8. V. I. Burenkov, “On exact constants in inequalities for norms of intermediate derivatives on a finite interval. II,” Tr. Mat. Inst. Akad. Nauk SSSR, 173, 38–49 (1986).

    MATH  MathSciNet  Google Scholar 

  9. M. Sato, “The Landau inequality for bounded intervals with |f (3)| finite,” J. Approx. Theory, 34, 159–166 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. I. Zvyagintsev, “Kolmogorov inequalities for n=4,” Latv. Mat. Ezhegodnik, 26, 165–175 (1982).

    MATH  MathSciNet  Google Scholar 

  11. A. Yu. Shdrin, “On exact constants in inequalities for L -norms of derivatives on a finite intervals,” Dokl. Ros. Akad. Nauk, 326, No. 1, 50–53 (1992).

    Google Scholar 

  12. A. Yu. Shadrin, “To the Landau-Kolmogorov problem on a finite interval,” in: Open Problems in Approximation Theory. Proceedings of the International Conference (Voneshta Voda, June 18–25, 1993), Science Culture Technology, Singapore (1993), pp. 192–204.

    Google Scholar 

  13. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On inequalities for norms of intermediate derivatives on a finite interval,” Ukr. Mat. Zh., 47, No. 1, 105–107 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On inequalities for derivatives on an interval,” in: Abstracts of the International Conference on the Theory of Approximation and Problems of Computational Mathematics. [in Russian], Dnepropetrovsk (1993), p. 12.

  15. N. P. Korneichuk, V. F. Babenko, and S. A. Pichugov, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  16. G. V. Milovanovic, “Extremal problems for polynomials: old and new results,” in Open Problems in Approximation Theory. Proceedings of the International Conference (Voneshta Voda, June 18–25, 1993), Science Culture Technology, Singapore (1993), pp. 138–155.

    Google Scholar 

  17. A. C. Shaeffer and R. J. Duffin, “On some inequalities of S. Bernstein and W. Markov for derivatives of polynomials,” Bull. Am. Math. Soc., 44, 289–297 (1938).

    Article  Google Scholar 

  18. S. V. Konyagin, “On the Markov inequality for polynomials in the metric of L 1,” Tr. Mat. Inst. Akad. Nauk SSSR 145, 117–125 (1980).

    MATH  MathSciNet  Google Scholar 

  19. G. Labelle, “Concerning polynomials on the unit interval,” Proc. Am. Math. Soc., 20, 321–326 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  20. B. D. Bojanov, “An extension of the Markov inequality,” J. Approx. Theory, 35, 181–190 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  21. Z. Ditzian and V. Torik, Moduli of Smoothness, Springer-Verlag, Berlin (1987).

    MATH  Google Scholar 

  22. V. K. Dzyadyk, Introduction in the Theory of Uniform Polynomial Approximation of Functions [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  23. O. V. Besov, “Extension of functions outside a domain with preservation of difference-differential properties in L p,” Mat. Sb., 66, No. 1, 80–96 (1965).

    MathSciNet  Google Scholar 

  24. I. A. Shevchuk, Polynomial Approximation and Traces of Functions Continuous on an Interval [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  25. Z. Ditzian, D. Jiang, and D. Leviatan, “Simultaneous polynomial approximation,” SIAM. J. Math. Anal., 24, No. 6, 1652–1661 (1993).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Dnepropetrovsk University, Dnepropetrovsk. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 5, pp. 619–628, May, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.F., Kofanov, V.A. & Pichugov, S.A. On additive inequalities for intermediate derivatives of functions given on a finite interval. Ukr Math J 49, 685–696 (1997). https://doi.org/10.1007/BF02486450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486450

Keywords

Navigation