Skip to main content
Log in

Nerve conduction theory: Some mathematical consequences of Bernstein's model

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

The generally accepted permeability theory of nerve conduction is presented in mathematical form. The resulting velocity formula is found to agree well with data on squid giant axon, but predicts velocities considerably too high in the case ofNitella. The dependence of velocity on fiber diameter is discussed for both medullated and non-medullated nerve, it being shown theoretically that velocity is proportional to the square root of diameter for non-medullated and to the diameter for medullated nerve. The equations relating the shape of the action spike to the observed permeability changes are given but are not solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bernstein, J. 1912.Elektrobiologie, p. 95. Braunschweig: Vieweg & Sohn.

    Google Scholar 

  • Broemser, Ph. 1925. “Das Prinzip der Nervenleitung.”Zeit. F. Biol.,83, 355–398.

    Google Scholar 

  • Carlson, A. J. and Johnson, V. 1937.The Machinery of the Body. Chicago: University of Chicago Press.

    Google Scholar 

  • Cole, K. and Curtis, H. 1939. “Electric impedance of Nitella during activity,”J. Gen. Physiol.,22, 37–64.

    Article  Google Scholar 

  • Cole, K. and Curtis, H. 1938. “Electric impedance of squid giant axon during activity.”J. Gen. Physiol.,22, 649–670.

    Article  Google Scholar 

  • Cole, K. and Hodgkin, A. 1939. “Membrane and protoplasm resistance in the squid giant axon.”J. Gen. Physiol.,22, 671–687.

    Article  Google Scholar 

  • Cremer, M. 1923. “Die Ableitung der Cremerschen Formel für die Fortpflanzungsgeschwindigkeit der Erregung im Nerven.”Quart. J. Exp. Biol. Suppl., 96–97.

  • Cremer, M. 1909.Nagel's Handbuch der Physiologie des Menschen. p. 910. Braunschweig: Vieweg & Sohn.

    Google Scholar 

  • Erlanger, J. and Gasser, H. 1937.Electrical Signs of Nervous Activity. Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Gelfan, S. and Gerard, R. W. 1930. “Studies of single muscle fibers.”Am. J. Psysiol.,95, 412–416.

    Google Scholar 

  • Gerard, R. W. 1931. “Nerve Conduction in relation to nerve structure.”Quart. Rev. of Biol.,6, 59–83.

    Article  Google Scholar 

  • Gerard, R. W. 1930. “The response of nerve to oxygen lack.”Am. J. Physiol.,92, 498–541.

    Google Scholar 

  • Gerard, R. W. 1932. “Nerve Metabolism.”Physiol. Rev.,12, 512.

    Google Scholar 

  • Heilbrunn, L. W. 1938.An Outline of General Physiology. Philadelphia: Saunders.

    Google Scholar 

  • Hermann, L. 1899. “Zur theorie der Erregungsleitung und der elektrischen Erregung.”Pflüg Arch.,75, 574–590.

    Article  Google Scholar 

  • Hodgkin, A. L. 1939. “The relation between conduction velocity and the electrical resistance outside a nerve fiber.”J. Physiol. 94, 560–570.

    Google Scholar 

  • Hodgkin, A. L. 1938. “The subthreshold potentials in a crustacean nerve fiber.”Proc. Roy. Soc. B.,126, 87–121.

    Google Scholar 

  • Hursch, J. B. 1939. “Conduction velocity and diameter of nerve fibers.”Am. J. Physiol.,127, 131–139.

    Google Scholar 

  • Katz, B. 1937. “Experimental evidence for a non-conducted response of nerve to subthreshold stimulation.”Proc. Roy. Soc. B.,124, 244–276.

    Article  Google Scholar 

  • Katz, B. and Schmitt, O. H. 1940. “Electric interaction between two adjacent nerve fibers.”J. Physiol.,97, 471–488.

    Google Scholar 

  • Lillie, R. S. 1923.Protoplasmic Action and Nervous Action. Chicago: University of Chicago Press.

    Google Scholar 

  • Lillie, R. S. 1929. “Resemblance between the electromotor variations of rhythmically reacting living and non-living systems.”J. Gen. Physiol.,13, 1–11.

    Article  Google Scholar 

  • Offner, F. 1939. “Circuit theory of nervous conduction.”Am. J. Physiol.,126, 594.

    Google Scholar 

  • Pumphrey, R. J. and Young, J. Z. 1938. “The Rates of Conduction of nerve fibers in cephalopods.”J. Exp. Biol.,12, 453–466.

    Google Scholar 

  • Rashevsky, N. 1931. “On the theory of nervous conduction.”J. Gen. Physiol.,14, 517–528.

    Article  Google Scholar 

  • Rashevsky, N. 1933. “Some physico-mathematical aspects of nerve conduction.”Physics,4, 341–349.

    Article  MATH  Google Scholar 

  • Rashevsky, N. 1935. “Some physico-mathematical aspects of nerve conduction. II.”Physics,6, 308–314.

    Article  MATH  Google Scholar 

  • Rashevsky, N. 1938.Mathematical Biophysics: The University of Chicago Press.

  • Rushton, W. 1937. “Initiation of the propagated disturbance.”Proc. Roy Soc. B.,124, 210–243.

    Google Scholar 

  • Tasaki, I. 1939. “The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber.”Am. J. Physiol.,127, 211–227.

    Google Scholar 

  • Umrath, K. 1927. “Über die Erregungsleitung bei sensitiven Pflanzen.”Planta,5, 274–324.

    Article  Google Scholar 

  • Weinberg, A. 1939. “Nerve conduction with distributed capacitance.”J. Applied Physics,10, 128–134.

    Article  Google Scholar 

  • Weinberg, A. 1940. “The equivalence of the conduction theories of Rashevsky and Rushton.”Bull. Math. Biophys.,2, 61–64.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Offner, F., Weinberg, A. & Young, G. Nerve conduction theory: Some mathematical consequences of Bernstein's model. Bulletin of Mathematical Biophysics 2, 89–103 (1940). https://doi.org/10.1007/BF02478173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478173

Keywords

Navigation