Skip to main content
Log in

Diffusion and recombination of products of ionizing radiations

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

The relative importance of diffusion and recombination of the products of ionizing radiations is examined in several typical cases and methods for the solution of the differential equation of columnar ionization are discussed. It is shown that Jaffé's method is not applicable to radiobiological or purely radiochemical processes in which no external electric fields are acting. A method based on a recent suggestion of Kramers (see Gerritsen, 1948) appears to be particularly good when recombination is strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Barrer, M. 1941. Diffusion in and through solids. Cambridge: University Press.

    Google Scholar 

  • Cobine, J. D. 1941. Gaseous Conductors. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Compton, K. T. and I. Langmuir. 1930. “Electrical Discharges in Gases.”Rev. Mod. Physics,2, 123–242.

    Article  Google Scholar 

  • Creighton, H. J. 1943. Electrochemistry. Vol. I. New York: John Wiley and Sons.

    Google Scholar 

  • Failla, G. 1949. “Biological Effects of Radiation and Health Protection.”Nucleonics,4, 42–4.

    Google Scholar 

  • Fletcher, A. 1944. “Note on tables of an integral.”Philos. Mag.,35, 16–17.

    MATH  MathSciNet  Google Scholar 

  • —, Miller, J. C. P. and L. Rosenhead, 1946.An index of mathematical tables. New York: McGraw Hill.

    MATH  Google Scholar 

  • Gerritsen, A. N. 1948. “Ionization by Alpha-Particles in liquids at low temperatures.”Physica,14, 381–424.

    Article  Google Scholar 

  • Glasstone, S., K. Laidler, and H. Eyring. 1941. Theory of rate processes. New York: McGraw-Hill.

    Google Scholar 

  • Gray, L. H. 1947. “The distribution of the ions resulting from the irradiation of living cells.”Brit. Jour. Radiol. Suppl., No. 1, 7–15.

    Google Scholar 

  • Jaffé, G. 1913. “Zur Theorie der Ionisation in Kolonnen.”Ann. d. Physik,42, 303–41.

    MATH  Google Scholar 

  • — 1929. “Kolonnenionisation in Gasen bei erhöhtem Druck.”Physik. Z.,30, 849–56.

    Google Scholar 

  • Landau, H. G. 1950. “A problem in radiobiology: diffusion and recombination of ions.”Bull. Math. Biophysics,12, 27–34.

    Article  Google Scholar 

  • Lea, D. E. 1946. Actions of Radiations on Living Cells. Cambridge: University Press.

    Google Scholar 

  • — 1947. “The action of radiations on dilute aqueous solutions: the spatial distribution of H and OH.”Brit. Jour. Radiol. Suppl., No. 1, 59–64.

    Google Scholar 

  • Mathematical Tables Project. 1940. Tables of Sine, Cosine and Exponential Integrals. Vol. I. New York: Works Progress Administration.

    Google Scholar 

  • Moelwyn-Hughes, E. A. 1940. Physical Chemistry. Cambridge: University Press.

    Google Scholar 

  • Opatowski, I. 1951. “Determination of the Sensitive Volume by Irradiation and the Ionization, Density.”Bull. Math. Biophysics,13, 263–71.

    MathSciNet  Google Scholar 

  • Placzek, G. 1946. The functions\(E_n (x) = \int_1^\infty {e^{ - xu} u^{ - n} du} \).Nat. Res. Counc. of Canada. Div. Atomic Energy. Chalk River, Ontario.

    Google Scholar 

  • Pollard, E. C. and F. Forro, Jr. 1949. “Examination of the target theory by deuteron bombardment ofT−1 phage.”Science,109, 374–75.

    Google Scholar 

  • Powell, E. O. 1943. “An integral related to the radiation integrals.”Philos. Mag.,34, 600–07.

    MATH  MathSciNet  Google Scholar 

  • Timoféeff-Ressovsky, N. W. and K. G. Zimmer. 1947. Biophysik. Leipzig: Hirzel.

    Google Scholar 

  • Toulis, W. J. 1950. “The decomposition of water by radiation.”U. S. Atomic Energy Commission. UCRL-583.

  • Zirkle, R. E. 1935. “Biological effectiveness of α-particles as a function of ion concentration produced in their paths.”Amer. Jour. Cancer,23, 558–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opatowski, I., Tangherlini, F.R. Diffusion and recombination of products of ionizing radiations. Bulletin of Mathematical Biophysics 13, 273–288 (1951). https://doi.org/10.1007/BF02477922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477922

Keywords

Navigation