Skip to main content
Log in

Tissue growth and cancer

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

Food and metabolic waste products, insofar as they act upon the hereditary substrate of cells, are the most important factors governing tissue growth. Equations describing the growth of tissues are derived in consideration of this fact. A quantity is found in these equations which, if slightly changed, results in very great changes in the growth rate of the tissue, where such very great changes are interpretable as neoplastic growth. The relationship between our equations and similar equations which others have proposed is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andrew, W. and Cardwell, E. S. 1940. “Neuronophagia in the Human Cerebral Cortex in Senility and in Pathologic Conditions.”Arch. Path.,29, 400–414.

    Google Scholar 

  • Burroughs, E. W., Burroughs, H. S. and Mitchell H. H. 1940. “The Amino Acids Required for the Complete Replacement of Endogenous Losses in the Adult Rat.”Jour. Nutrition,19, 363–384.

    Google Scholar 

  • Carrel, A. 1931. “Physiological Time.”Science,74, 618–621.

    MATH  Google Scholar 

  • Carrel, A. and Ebeling, A. H. 1923. “Antagonistic Growth Principles of Serum and Their Relation to Old Age.”Jour. Exp. Med.,38, 419–425.

    Article  Google Scholar 

  • Child, C. M. 1915.Senescence and Rejuvenescence. Chicago: University of Chicago Press.

    Google Scholar 

  • Cowdry, E. V. 1944.A Textbook of Histology. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Donnan, F. G. 1936. “Integral Analysis and the Phenomena of Life.”Acta Biotheoretica,2, 1–11.

    Article  MATH  Google Scholar 

  • Fischer, A. 1946.Biology of Tissue Cells. New York: G. E. Stechert & Company.

    Google Scholar 

  • Heilbrunn, L. V. 1943.An Outline of General Physiology. Philadelphia and London: W. B. Saunders Co.

    Google Scholar 

  • Hinshelwood, C. N. 1946.The Chemical Kinetics of the Bacterial Cell. Oxford: The Clarendon Press.

    Google Scholar 

  • Hogan, A. G. and Pilcher, R. W. 1933. “Effects of Variations in the Amounts of Vitamin B and Protein in the Ration.”Missouri Agricultural Experiment Station Research Bulletin 195.

  • Kempner, W. 1936. “Effect of Low Oxygen Tension upon Respiration and Fermentation of Isolated Cells.”Proc. Soc. Exp. Biol. Med.,35, 148–151.

    Google Scholar 

  • Kempner, W. 1937. “Effect of Oxygen Tension on Cellular Metabolism.”Jour. Cell & Comp. Phys.,10, 339–363.

    Article  Google Scholar 

  • Kesselman, R. H. 1948. “A Mathematical Study of Organism Growth as an Approach to the Cancer Problem.”Bull. Math. Biophysics,10, 69–84.

    Google Scholar 

  • Kostitzin, V. A. 1939.Mathematical Biology. London: George S. Harrap & Company.

    MATH  Google Scholar 

  • Little, C. C. 1947.Genetics, Medicine, and Man. Ithaca: Cornell University Press.

    Google Scholar 

  • Lotka, A. J. 1925.Elements of Physical Biology. Baltimore: Williams & Wilkins Company.

    MATH  Google Scholar 

  • Moore, R. A. 1944.A Textbook of Pathology. Philadelphia and London: W. B. Saunders Co.

    Google Scholar 

  • Morales, M. F. and Kreutzer, F. L. 1945. “Some Nutritional and Excretional Interactions and the Growth of an Organ or Colony.”Bull. Math. Biophysics,7, 15–24.

    Google Scholar 

  • Muller, H. J. 1947.Genetics, Medicine, and Man. Ithaca: Cornell University Press.

    Google Scholar 

  • Needham, J. 1942.Biochemistry and Morphogenesis. Cambridge: The University Press.

    Google Scholar 

  • Pearl, R. 1927. “The Growth of Populations.”Quart. Rev. Biol.,2, 532–548.

    Article  Google Scholar 

  • Rashevsky, N. 1938.Mathematical Biophysics. Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Rubner, M. 1924. “Die Beziehung des Kolloidalzusstandis der Gewebe für den Ablauf des Wachstums.”Biochem. Ztschr.,148, 187–221.

    Google Scholar 

  • Schrödinger, E. 1945.What is Life? New York: The Macmillan Company.

    Google Scholar 

  • Smith, P. E. and Copenhaver, W. M. 1948.Bailey's Textbook of Histology. Baltimore: Williams & Wilkins Company.

    Google Scholar 

  • Thompson, D. W. 1942.On Growth and Form. New York: The Macmillan Company.

    MATH  Google Scholar 

  • Volterra, V. 1938. “Population Growth, Equilibria, and Extinction under specified Breeding Conditions: A Development and Extension of the Theory of the Logistic Curve.”Human Biol.,10, 1–11.

    Google Scholar 

  • Volterra, V. and D'Ancona, U. 1935.Les Associations Biologiques au Point de Vue Mathematique. Paris: Hermann et Cie.

    Google Scholar 

  • Weiss, S. and Frazier, W. R. 1930. “The Density of the Surface Capillary Bed of the Forearm in Health, in Arterial Hypertension, and in Arteriosclerosis.”Am. Heart Jour.,5, 511–518.

    Article  Google Scholar 

  • Wetzel, N. C. 1944.Medical Physics (Edited by Otto Glasser). Chicago: The Year Book Publishers, Inc.

    Google Scholar 

  • Willis, R. A. 1948.Pathology of Tumours. St. Louis: The C. V. Mosby Company.

    Google Scholar 

  • Wilson, E. B. 1925.The Cell in Development and Heredity. New York: The Macmillan Company.

    Google Scholar 

  • Woodruff, L. L. 1941.Foundations of Biology. New York: The Macmillan Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesselman, R.H. Tissue growth and cancer. Bulletin of Mathematical Biophysics 11, 115–138 (1949). https://doi.org/10.1007/BF02477498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477498

Keywords

Navigation