Skip to main content
Log in

Optimization of diameters and bifurcation angles in lung and vascular tree structures

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

An optimization model is described for lung and vascular tree structures. The model extends Murray's model, which is derived from minimal power dissipation due to the frictional resistance of laminar flow and the volume of the duct system. Instead of just laminar flow, it takes into account all types of steady flow, e.g. turbulent and laminar flow, and predicts which structural changes will occur among different parts of trees having different types of flow. The sensitivity of the optimal values is indicated and the model, predictions are compared with literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Horsfield, K. and G. Cumming. 1967. “Angles of Branching and Diameters of Branches in the Human Bronchial Tree.”Bull. Math. Biophys.,29, 245–259.

    Google Scholar 

  • Hunt, W. A. 1969. “Calculations of Pulsatile Flow across Bifurcations in Distensible Tubes.”Biophys. J.,9, 993–1005.

    Article  Google Scholar 

  • Kamiya, A., T. Togawa and A. Yamamoto. 1974. “Theoretical Relationship between the Optimal Models of the Vascular Tree.”Bull. Math. Biol.,36, 311–323.

    Article  MATH  Google Scholar 

  • Karreman, G. 1952. “Some Contributions to the Mathematical Biology of Blood Circulation. Reflections of Pressure Waves in the Arterial System.”Bull. Math. Biophys.,14, 327–350.

    MathSciNet  Google Scholar 

  • McDonald, D. A. 1960.Blood Flow in Arteries. London: Arnold Ltd.

    Google Scholar 

  • Milsum, J. H. and F. A. Roberge. 1973. “Physiological Regulation and Control.” InFoundations of Mathematical Biology, Vol. III, Ed. R. Rosen, pp. 63–95. New York: Academic Press.

    Google Scholar 

  • Moody, L. F. 1944. “Friction Factors for Pipe Flow.”Trans. ASME,66, 671–684.

    Google Scholar 

  • Murray, C. D. 1926a. “The Physiological Principle of Minimum Work, I.”Proc. Nat. Acad. Sci.,12, 207–214.

    Article  Google Scholar 

  • —. 1926b. “The Physiological Principle of Minimum Work applied to the Angle of Branching of Arteries.”J. Gen. Physiol.,9, 835–841.

    Article  Google Scholar 

  • Newman, D. L., R. G. Gosling and N. L. R. Bowden. 1971. “Changes in Aortic Distensibility and Area Ratio with the Development of Atherosclerosis.”Atherosclerosis,14, 231–240.

    Article  Google Scholar 

  • Olson, D. E., G. A. Dart and G. F. Filley. 1974. “Pressure Drop and Fluid Flow Regime of Air inspired into the Human Lung.”J. Appl. Physiol.,28, 482–494.

    Google Scholar 

  • Rashevsky, N. 1973, “The Principle of Adequate Design.” InFourndations of Mathematical Biology, Vol. III, Ed. R. Rosen, pp. 143–175. New York: Academic Press.

    Google Scholar 

  • Rosen, R. 1967.Optimality Principles in Biology. London: Butterworths.

    MATH  Google Scholar 

  • — 1970.Dynamic System Theory in Biology, I: Stability Theory and its Applications. New York: Wiley.

    Google Scholar 

  • Steenbrink, P. A. 1974.Optimization of Transport Networks. London: Wiley—Interscience.

    Google Scholar 

  • Stein, P. D. and H. N. Sabbah. 1976. “Turbulent, Blood Flow in the Ascending, Aorta of Humans with Normal and Diseased Aortic Valves.”Circ. Res.,39, 58–65.

    Google Scholar 

  • Thoma, R. 1922. “Die mittlere Durchflussmenge der Arterien des Menschen als Funktion des Gefässradius, II”Pflüger Arch. ges. Physiol.,194, 385–406.

    Article  Google Scholar 

  • Thompson, D'Arcy, W. 1966.On Growth and Form. Abridged Edition. Cambridge: University Press.

    Google Scholar 

  • Uylings, H. B. M. and W. A. M. Veltman. 1975. “Characterizing a Dendritic Bifurcation.”Neurosci. Lett.,1, 127–128.

    Article  Google Scholar 

  • Zamir, M. 1975. “The Role of Shear Forces in Arterial Branching.”J. Gen. Physiol.,67, 213–222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uylings, H.B.M. Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bltn Mathcal Biology 39, 509–520 (1977). https://doi.org/10.1007/BF02461198

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461198

Keywords

Navigation