Skip to main content
Log in

A generalized Fokker-Planck equation in the case of the Volterra model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Zwanzig and Mori's projection-operator method is used in order to derive a generalized nonlinear Fokker-Planck equation for one “relevant” species in the many species conservative Volterra model. The deterministic, autonomous, Markovian equations of motion, when averaged over a suitable ensemble of initial conditions in general give rise to a non-autonomous, non-Markovian stochastic process for the evolution of this relevant species. Moreover, this relevant species may show irreversible damping, although self-interaction terms are absent in the many species model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Garcia-Colin, L. S. and J. L. del Rio. 1977. “A Unified Approach for Deriving Kinetic Equations in Nonequilibrium Statistical Mechanics. I Exact Results.”J. Statist. Phys.,16, 235–258.

    Article  MathSciNet  Google Scholar 

  • —, and J. L. del Rio. 1978. “A Unified Approach for Deriving Kinetic Equations in Nonequilibrium Statistical Mechanics. II. Approximate Results.”J. Statist. Phys.,19, 109–127.

    Article  MathSciNet  Google Scholar 

  • Goel, N. S., S. C. Maitra and E. W. Montroll. 1971. “On the Volterra and Other Nonlinear Models of Interacting Populations.”Rev. Mod. Phys.,43, 231–276.

    Article  MathSciNet  Google Scholar 

  • Kampen, N. G. van. 1974. “Remark on the Lotka-Volterra Model.”J. Statist. Phys.,11, 475–480.

    Article  Google Scholar 

  • Kerner, E. H.. 1957. “A Statistical Mechanics of Interacting Biological Species.”Bull. Math. Biophys.,19, 121–146.

    MathSciNet  Google Scholar 

  • — 1959. “Further Considerations on the Statistical Mechanics of Biological Associations.”Bull. Math. Biophys.,21, 217–255.

    MathSciNet  Google Scholar 

  • —. 1972.Gibbs Ensemble: Biological Ensemble. New York: Gordon and Breach.

    Google Scholar 

  • Kerner, E. H. 1974. “Why are there so many species?”Bull. Math. Biol.,36, 477–488.

    Article  MATH  Google Scholar 

  • Mori, H. 1965. “Transport, Collective Motion, and Brownian Motion.”Prog. Theor. Phys.,33, 423–455.

    Article  MATH  Google Scholar 

  • —. H. Fujisaka and H. Shigematsu. 1974. “A New Expansion of the Master Equation.”Proc. Theor. Phys.,51, 109–122.

    Article  Google Scholar 

  • Zwanzig R. 1961. “Memory Effects in Irreversible Thermodynamics.”Phys. Rev.,124, 983–992.

    Article  MATH  Google Scholar 

  • — 1973. “Generalized Verhulst Laws for Population Growth.”Proc. Natn. Acad. Sci. U.S.A. 70, 3048–3051.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roerdink, J., Weyland, A. A generalized Fokker-Planck equation in the case of the Volterra model. Bltn Mathcal Biology 43, 69–79 (1981). https://doi.org/10.1007/BF02460940

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460940

Keywords

Navigation