Skip to main content
Log in

RNA secondary structures and their prediction

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This is a review of past and present attempts to predict the secondary structure of ribonucleic acids (RNAs) through mathematical and computer methods. Related areas covering classification, enumeration and graphical representations of structures are also covered. Various general prediction techniques are discussed, especially the use of thermodynamic criteria to construct an optimal structure. The emphasis in this approach is on the use of dynamic programming algorithms to minimize free energy. One such algorithm is introduced which comprises existing ones as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Auron, P. E., W. P. Rindone, C. P. H. Vary, J. J. Celentano and J. N. Vournakis. 1982. “Computer-Aided Prediction of RNA Secondary Structures.”Nucl. Acids Res. 10, 403–419.

    Google Scholar 

  • Borer, P. N., B. Dengler, I. Tinoco, Jr. and O. C. Uhlenbeck. 1974. “Stability of Ribonucleic Acid Double-Stranded Helices.”J. molec. Biol. 86, 843–853.

    Article  Google Scholar 

  • Boyle, J., G. T. Robillard and S.-H. Kim. 1980. “Sequential Folding of Transfer RNA. A Nuclear Magnetic Resonance Study of Successively Longer tRNA Fragments with a Common t′ End.”J. molec. Biol. 139, 601–625.

    Article  Google Scholar 

  • Byers, T. H. and M. S. Waterman. 1984. “Determining All Optimal and Near-Optimal Solutions when Solving Shortest Path Problems by Dynamic Programming.”Operat. Res. (in press).

  • Cech, T. R., N. K. Tanner, I. Tinoco, Jr., B. R. Weir, M. Zuker and P. S. Perlman. 1983. “Secondary Structure of the Tetrahymena Ribosomal RNA Intervening Sequence: Structural Homology with Fungal Mitochondrial Intervening Sequences.”Proc. natn Acad. Sci. U.S.A. 80, 3903–3907.

    Article  Google Scholar 

  • Comay, E., R. Nussinov and O. Comay. 1984. “An Accelerated Algorithm for Calculating the Secondary Structure of Single-stranded RNAs.”Nucl. Acids. Res. 12, 53–66.

    Google Scholar 

  • Davies, R. W., R. B. Waring, J. A. Ray, T. A. Brown and C. Scazzocchio. 1982. “Making Ends Meet: A Model for RNA Splicing in Fungal Mitochondria.”Nature, Lond. 300, 719–724.

    Article  Google Scholar 

  • Domdey, H., P. Jank, H. L. Sänger and H. J. Gross. 1978. “Studies on the Primary and Secondary Structure of Potato Spindle Tuber Viroid: Products of Digestion with Ribonuclease A and Ribonuclease T1, and Modification with Bisulfite.”Nucl. Acids Res. 5, 1221–1236.

    Google Scholar 

  • Erdmann, V. A. 1982. “Collection of Published 5S and 5.8S RNA Sequences and Their Precursors.”Nucl. Acids Res. 10, R93-R115.

    Google Scholar 

  • Fink, T. R. and D. M. Crothers. 1972. “Free Energy of Imperfect Nucleic Acid Helices. I. The Bulge Defect.”J. molec. Biol. 66, 1–12.

    Article  Google Scholar 

  • Fox, G. E. and C. R. Woese. 1975. “5S RNA Secondary Structure.”Nature, Lond. 256, 505–507.

    Article  Google Scholar 

  • Fresco, J. R., B. M. Alberts and P. Doty. 1960. “Some Molecular Details of the Secondary Structure of Ribonucleic Acid.”Nature, Lond. 188, 98–101.

    Article  Google Scholar 

  • Glotz, C. and R. Brimacombe. 1980. “An Experimentally-Derived Model for the Secondary Structure of the 16S Ribosomal RNA fromEscherichia coli.”Nucl. Acids. Res. 8, 2377–2395.

    Google Scholar 

  • Gralla, J. and D. M. Crothers. 1973(a). “Free Energy of Imperfect Nucleic Acid Helices. II. Small Hairpin Loops.”J. molec. Biol. 73, 497–511.

    Article  Google Scholar 

  • — and—. (1973(b). “Free Energy of Imperfect Nucleic Acid Helices. III. Small Internal Loops Resulting from Mismatches.”J. molec. Biol. 78, 301–319.

    Article  Google Scholar 

  • Gross, H. J., H. Domdey, C. Lossow, P. Jank, M. Raba and H. Alberty. 1978. “Nucleotide Sequence and Secondary Structure of Potato Spindle Tuber Viroid.”Nature, Lond. 273, 203–208.

    Article  Google Scholar 

  • Hadidi, A. and J. N. Vournakis. 1978. “Secondary Structure in Potato Spindle Tuber Viroid.”J. Supramol. Struct. 7 (Suppl. 2), 280.

    Google Scholar 

  • Hancock, J. and R. Wagner. 1982. “A Structural Model of 5S RNA fromE. Coli based on Intramolecular Crosslinking Evidence.”Nucl. Acids Res. 10, 1257–1269.

    Google Scholar 

  • Jacobson, A. B., L. Good, J. Simonetti and M. Zuker. 1984. “Some Simple Computational Methods to Improve the Folding of Large RNAs.”Nucl. Acids Res. 12, 45–52.

    Google Scholar 

  • Kim, S. H., F. L. Suddath, G. J. Quigley, A. McPherson, J. L. Sussman, A. H. J. Wang, N. C. Seeman and A. Rich. 1974. “Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA.”Science 185, 435–440.

    Google Scholar 

  • Lapalme, G., R. J. Cedergren and D. Sankoff. 1982. “An Algorithm for the Display of Nucleic Acid Secondary Structure.”Nucl. Acids Res. 10, 8351–8356.

    Google Scholar 

  • Mainville, S. 1981. “Comparaisons et Auto-comparaisons de Chaînes Finies.” Ph.D. thesis, Université de Montréal, Canada;

    Google Scholar 

  • Martinez, H. M. 1984. “An RNA Folding Rule.”Nucl. Acids Res. 12, 323–334.

    Google Scholar 

  • McClements, W. L. and P. Kaesberg. 1977. “Size and Secondary Structure of Potato Spindle Tuber Viroid.”Virology 76, 477–484.

    Article  Google Scholar 

  • Needleman, S. B. and C. D. Wunsch. 1970. “A General Method Applicable to the Search for Similarities in the Amino-Acid Sequence of Two Proteins.”J. molec. Biol. 48, 443–453.

    Article  Google Scholar 

  • Ninio, J. 1971. “Properties of Nucleic Acid Representations I. Topology.”Biochimie 53, 485–494.

    Google Scholar 

  • — 1979. “Prediction of Pairing Schemes in RNA Molecules–Loop Contributions and Energy of Wobble and Non-wobble Pairs.”Biochimie 61, 1133–1150.

    Google Scholar 

  • Nussinov, R. 1977. “Secondary Structure Analysis of Nucleic Acids.” Diss. Abstr. Int. B. Sci. Eng., Univ. Microfilms Int., Ann Arbor, Mich., Order No. 7805110.

    Google Scholar 

  • — and A. B. Jacobson. 1980. “Fast Algorithm for Predicting the Secondary Structure of Single-stranded RNA.”Proc. natn. Acad. Sci. U.S.A. 77, 6309–6313.

    Article  Google Scholar 

  • —, G. Pieczenik, J. R. Griggs and D. J. Kleitman. 1978. “Algorithms for Loop Matchings.”SIAM J. appl. Math. 35, 68–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Osterburg, G. and R. Sommer. 1981. “Computer Support of DNA Sequence Analysis.”Comput. Programs Biomed. 13, 101–109.

    Article  Google Scholar 

  • Papanicolaou, C., M. Gouy and J. Ninio. 1984. “An Energy Model that Predicts the Correct Folding of Both the tRNA and the 5S RNA Molecules.”Nucl. Acids Res. 12, 31–44.

    Google Scholar 

  • Pipas, J. M. and J. E. McMahon. 1975. “Method for Predicting RNA Secondary Structure.”Proc. natn. Acad. Sci. U.S.A. 72, 2017–2021.

    Article  Google Scholar 

  • Quigley, G. J., L. Gehrke, D. A. Roth and P. E. Auron. 1984. “Computer-Aided Nucleic Acid Secondary Structure Modeling Incorporating Enzymatic Digestion Data.”Nucl. Acids Res. 12, 347–366.

    Google Scholar 

  • Riesner, D., M. Colpan, T. C. Goodman, L. Nagel, J. Schumacher, G. Steger and H. Hofmann. 1983. “Dynamics and Interactions of Viroids.”J. Biomol. Structure and Dynamics 1, 669–688.

    Google Scholar 

  • Salser, W. 1977. “Globin Messenger-RNA Sequences—Analysis of Base-Pairing and Evolutionary Implications.”Cold Spring Harbor Symp. Quant. Biol. 42, 985–1002.

    Google Scholar 

  • Sankoff, D. 1972. “Matching Sequences Under Deletion-Insertion Constraints.”Proc. natn. Acad. Sci. U.S.A. 69, 4–6.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1984. “Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems.” Technical Report No. 1217, Université de Montréal, Canada.

    Google Scholar 

  • — and P. H. Sellers. 1973. “Shortcuts, Diversions and Maximal Chains in Partially Ordered Sets.”Discrete Math. 4, 287–293.

    Article  MATH  MathSciNet  Google Scholar 

  • —, A.-M. Morin and R. J. Cedergren. 1978. “The Evolution of 5S RNA Secondary Structures.”Can. J. Biochem. 56, 440–443.

    Article  Google Scholar 

  • —, J. B. Kruskal, S. Mainville and R. J. Cedergren. 1983. “Fast Algorithms to Determine RNA Secondary Structures Containing Multiple Loops.” InTime Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Eds D. Sankoff and J. B. Kruskal, pp. 93–120. Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  • Shapiro, B. A., L. E. Lipkin and J. Maizel. 1982. “An Interactive Technique for the Display of Nucleic Acid Secondary Structure.”Nucl. Acids Res. 10, 7041–7052.

    Google Scholar 

  • —, J. Maizel, L. E. Lipkin, K. Currey and C. Whitney. 1984. “Generating Nonoverlapping Displays of Nucleic Acid Secondary Structure.”Nucl. Acids Res. 12, 75–88.

    Google Scholar 

  • Sloane, N. J. A. 1973.A Handbook of Integer Sequences. Academic Press.

  • Steger, G., H. Hofmann, B. Förtsch, H. J. Gross, J. W. Randles, H. L. Sänger and D. Riesner. “Conformational Transitions in Viroids and Virusoids: Comparison of results from energy minimization algorithm and from experimental data.”Biopolymers. (In preparation.)

  • Stein, P. R. and M. S. Waterman, 1978. “On Some New Sequences Generalizing the Catalan and Motzkin Numbers.”Discrete Math. 26, 261–272.

    Article  MathSciNet  Google Scholar 

  • Stiegler, P., P. Carbon, J.-P. Ebel and C. Ehresmann. 1981(a). “A General Secondary Structure Model for Procaryotic and Eucaryotic RNAs of the Small Ribosomal Subunits.”Eur. J. Biochem. 120, 487–495.

    Article  Google Scholar 

  • ——, M. Zuker, J.-P. Ebel and C. Ehresmann. 1981(b). “Structural Organization of the 16S Ribosomal RNA fromE. coli. Topography and Secondary Structure.”Nucl. Acids Res. 9, 2153–2172.

    Google Scholar 

  • Studnicka, G. M., F. A. Eiserling and J. A. Lake. 1981. “A Unique Secondary Folding Pattern for 5S RNA Corresponds to the Lowest Energy Homologous Secondary Structure in 17 Different Prokaryotes.”Nucl. Acids Res. 9, 1885–1904.

    Google Scholar 

  • —, G. M. Rahn, I. W. Cumming and W. A. Salser. 1978. “Computer Method for Predicting the Secondary Structure of Single-stranded RNA.”Nucl. Acids Res. 5, 3365–3387.

    Google Scholar 

  • Tinoco, I., Jr., O. C. Uhlenbeck and M. D. Levine. 1971. “Estimation of Secondary Structure in Ribonucleic Acids.”Nature, Lond. 230, 362–367.

    Article  Google Scholar 

  • —, P. N. Borer, B. Dengler, M. D. Levine, O. C. Uhlenbeck, D. M. Crothers and J. Gralla. 1973. “Improved Estimation of Secondary Structure in Ribonucleic Acids.”Nature New Biol. 246, 40–41.

    Google Scholar 

  • Trifonov, E. N. and G. Bolshoi. 1983. “Open and Closed 5S Ribosomal RNA, the Only Two Universal Structures Encoded in the Nucleotide Sequences.”J. molec. Biol. 169, 1–13.

    Google Scholar 

  • Uhlenbeck, O. C., P. N. Borer, B. Dengler and I. Tinoco. 1973. “Stability of RNA Hairpin Loops:A 6-Cm-U6.”J. molec. Biol. 73, 483–496.

    Article  Google Scholar 

  • Waring, R. B., C. Scazzocchio, T. A. Brown and R. W. Davies. 1983. “Close Relationship Between Certain Nuclear and Mitochondrial Introns.”J. molec. Biol. 167, 595–605.

    Google Scholar 

  • Waterman, M. S. 1978. “Secondary Structure of Single-stranded Nucleic Acids.” InStudies in Foundations and Combinatorics, Advances in Mathematics Suppl. Studies. Vol. 1, pp. 167–212. Academic Press.

  • — 1983. “Sequence Alignments in the Neighborhood of the Optimum with General Application to Dynamic Programming.”Proc. natn. Acad. Sci. U.S.A. 80, 3123–3124.

    Article  MATH  Google Scholar 

  • — and T. F. Smith. 1978. “RNA Secondary Structure: A Complete Mathematical Analysis.”Math. Biosci. 42, 257–266.

    Article  MATH  Google Scholar 

  • Weidner, H., R. Yuan and D. M. Crothers. 1977. “Does 5S RNA Function by a Switch Between Two Secondary Structures?”Nature, Lond. 266, 193–194.

    Article  Google Scholar 

  • Woese, C. R. L. J. Magrum, R. Gupta, R. B. Siegel, D. A. Stahl, J. Kop, N. Crawford, J. Brosius, R. Gutell, J. J. Hogan and H. F. Noller. 1980. “Secondary Structure Model for Bacterial 16S Ribosomal RNA: Phylogenetic, Enzymatic and Chemical Evidence.”Nucl. Acids Res. 8, 2275–2293.

    Google Scholar 

  • Wollenzien, P., J. E. Hearst, P. Thammana and C. R. Cantor. 1979. “Base-pairing Between Distant Regions of theEscherichia coli 16S Ribosomal RNA in Solution.”J. molec. Biol. 135, 255–269.

    Article  Google Scholar 

  • Zuker, M. and P. Stiegler. 1981. “Optimal Computer Folding of Large RNA Sequences using Thermodynamics and Auxiliary Information.”Nucl. Acids Res. 9, 133–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Issued as NRCC No. 23684.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuker, M., Sankoff, D. RNA secondary structures and their prediction. Bltn Mathcal Biology 46, 591–621 (1984). https://doi.org/10.1007/BF02459506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459506

Keywords

Navigation