The limits of hamiltonian structures in threedimensional elasticity, shells, and rods
 Z. Ge,
 H. P. Kruse,
 J. E. Marsden
 … show all 3 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessSummary
This paper uses Hamiltonian structures to study the problem of the limit of threedimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a threedimensional elastic body converges, in a sense made precise, to that for a shell model described by a onedirector Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure.
The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic onedirector model for shells. Another way of stating the convergence result is that there is an almostPoisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model.
We apply our theory in the specific case of a 3D Saint VenantKirchhoff material andderive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhofflike shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a onedirector Kirchhoff elastic rod model, which reduces to the wellknown Euler elastica if one adds an additional single constraint that the director lines up with the Frenet frame.
 Abresch, U. [1987] Constant mean curvature tori in terms of elliptic functions.J. Reine Angew. Math. 374, 169–192.
 Antman, S. S. [1972], The theory of rods,Handbuch der Physik, Band VIa/2, S. Flügge and C. Truesdell, eds., SpringerVerlag, Berlin, 641–703.
 Antman, S. S. [1995],Nonlinear Problems of Elasticity, Applied Mathematical Sciences,107, SpringerVerlag, New York.
 Antman, S. S. and W. H. Warner [1967] Dynamical theory of hyperelastic rods.Arch. Ratl. Mech. Anal. 23, 135–162.
 Caflisch, R. and J. H. Maddocks [1984] Nonlinear dynamical theory of the elastica.Proc. R. Soc. Edin. 99A, 1–23.
 Camassa, R. and D. Holm [1993] An integrable shallow water equation with peaked solitons,Phys. Rev. Lett.,71, 1661–1664. CrossRef
 Ciarlet, P. G. [1980], A justification of the von Kármán equations.Arch. Ratl. Mech. Anal. 73, 349–389.
 Ciarlet, P. G. [1994] Mathematical shell theory: recent developments and open problems, inDuration and Change: Fifty years at Oberwolfach, M. Artin, H. Kraft, and R. Remmert eds., SpringerVerlag, New York, 159–176.
 Ciarlet, P. G. and V. Lods [1994] Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de W. T. Koiter.C. R. Acad. Sci. Paris 319 299–304.
 Ciarlet, P. G., V. Lods, and B. Miara [1994] Analyse asymptotique des coques linéairement élastiques. II. Coques “en flexion”.C. R. Acad. Sci. Paris 319, 95–100, 1994.
 Ciarlet, P. G. and B. Miara [1992], Two dimensional shallow shell equations.Comm. Pure Appl. Math. XLV, 327–360.
 Destuynder, P. [1985], A classification of thin shell theories.Acta Appl. Math. 4, 15–63. CrossRef
 do Carmo, M. [1976],Differential Geometry of Curves and Surfaces, PrenticeHall, Englewood Cliffs, N.J..
 Foltinek, K. [1994] The Hamilton theory of elastica.Amer. J. Math. 116, 1479–1488. CrossRef
 Fox, D., A. Raoult, and J. C. Simo [1992] Modèles asymptotiques invariants pour des structures minces élastiques.C. R. Acad. Sci. Paris 315, 235–240.
 Fox, D., A. Raoult, and J. C. Simo [1993] A justification of nonlinear properly invariant plate theories.Arch. Ratl. Mech. Anal.,124, 157–199. CrossRef
 Ge, Z. [1991] Equivariant symplectic difference schemes and generating functions,Physica D 49, 376–386. CrossRef
 Ge, Z., H. P. Kruse, J. E. Marsden and C. Scovel [1995] Poisson Brackets in the Shallow Water Approximation.Canad. Appl. Math. Quart., to appear.
 Ge, Z. and J. E. Marsden [1988] LiePoisson integrators and LiePoisson HamiltonJacobi theory,Phys. Lett. A 133, 134–139. CrossRef
 Ge, Z. and C. Scovel [1994] A Hamiltonian truncation of the shallow water equation.Lett. Math. Phys. 31, 1–13. CrossRef
 John, F. [1971] Refined interior equations for the elastic shells.Comm. Pure Appl. Math. 24, 584–675.
 Kato, T. [1985]Abstract Differential Equations and Nonlinear Mixed Problems. Lezioni Fermiane, Scuola Normale Superiore, Accademia Nazionale dei Lincei.
 Koiter, W. T. [1970], On the foundation of the linear theory of thin elastic shells.Proc. Kon. Nederl. Akad. Wetensch. B69, 1–54.
 Landau, L. D. and E. M. Lifshitz [1959],Theory of Elasticity, AddisonWesley, Reading, MA.
 Langer, J. and R. Perline [1991] Poisson geometry of the filament equation.J. Nonlin. Sci. 1, 71–94. CrossRef
 Le Dret, H. and A. Raoult [1995] The nonlinear membrane model as a variational limit of nonlinear threedimensional elasticity.J. Math. Pure Appl. (to appear).
 Love, A. E. H. [1944]A Treatise on the Mathematical Theory of Elasticity. Dover, New York.
 Maddocks, J. [1984] Stability of nonlinearly elastic rods.Arch. Ratl. Mech. Anal. 85, 311–354.
 Maddocks, J. [1991] On the stability of relative equilibria.IMA J. Appl. Math. 46, 71–99.
 Marsden, J. E. and T. J. R. Hughes [1994]Mathematical Foundations of Elasticity. Dover, New York; reprint of [1983] PrenticeHall edition.
 Marsden, J. E., T. S. Ratiu, and G. Raugel [1995] Equations d’Euler dans une coque sphérique mince (The Euler equations in a thin spherical shell),C. R. Acad. Sci. Paris 321, 1201–1206.
 Mielke, A. and P. Holmes [1988] Spatially complex equilibira of buckled rods.Arch. Ratl. Mech. Anal.,101, 319–348.
 Naghdi, P. [1972], The theory of shells and plates.Handbuch der Physik Band VIa/2, S. Flügge and C. Truesdell, eds., SpringerVerlag, Berlin, 425–640.
 Shi, Y. and J. E. Hearst [1994] The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling.J. Chem. Phys. 101, 5186–5200. CrossRef
 Simo, J. C., M. S. Rifai, and D. D. Fox [1992], On a stress resultant geometrically exact shell models. Part VI: Conserving algorithms for nonlinear dynamics.Comp. Meth. Appl. Mech. Eng. 34, 117–164.
 Simo, J. C., J. E. Marsden, and P. S. Krishnaprasad [1988] The Hamiltonian structure of nonlinear elasticity: The material, spatial, and convective representations of solids, rods, and plates.Arch. Ratl. Mech. Anal. 104, 125–183.
 Simo, J. C., T. A. Posbergh, and J. E. Marsden [1990] Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energymomentum method,Phys. Rep. 193, 280–360. CrossRef
 Simo, J. C., T. A. Posbergh, and J. E. Marsden [1991] Stability of relative equilibria II: Three dimensional elasticity,Arch. Ratl. Mech. Anal.,115, 61–100. CrossRef
 Title
 The limits of hamiltonian structures in threedimensional elasticity, shells, and rods
 Journal

Journal of Nonlinear Science
Volume 6, Issue 1 , pp 1957
 Cover Date
 19960101
 DOI
 10.1007/BF02433809
 Print ISSN
 09388974
 Online ISSN
 14321467
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Authors

 Z. Ge ^{(1)}
 H. P. Kruse ^{(2)}
 J. E. Marsden ^{(3)}
 Author Affiliations

 1. The Fields Institute for Research in Mathematical Sciences, 222 College Street, M5T 3J1, Toronto, Ontario
 2. Institut für Angewandte Mathematik, Universität Hamburg, Bundestrasse 55, D20146, Hamburg, Germany
 3. Control and Dynamical Systems, California Institute of Technology 10444, 91125, Pasadena, CA