Skip to main content
Log in

Euler's problem, Euler's method, and the standard map; or, the discrete charm of buckling

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

We explore the relation between the classical continuum model of Euler buckling and an iterated mapping which is not only a mathematical discretization of the former but also has an exact, discrete mechanical analogue. We show that the latter possesses great numbers of “parasitic” solutions in addition to the natural discretizations of classical buckling modes. We investigate this rich bifurcational structure using both mechanical analysis of the boundary value problem and dynamical studies of the initial value problem, which is the familiar standard map. We use this example to explore the links between discrete initial and boundary value problems and, more generally, to illustrate the complex relations among physical systems, continuum and discrete models and the analytical and numerical methods for their study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amick, C., Ching, E. S. C., Kadanoff, L. P., and Rom-Kedar, V. (1992) Beyond All Orders: Singular Perturbations in a Mapping.J. of Nonlinear Science 2:9–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Antman, S. S., and Adler, C. L. (1987) Design of Material Properties that Yield a Prescribed Global Buckling Response.J. Applied Mech 109: 263–268.

    MathSciNet  Google Scholar 

  • Arnold, V. I. (1983) Geometrical Methods in the Theory of Ordinary Differential Equations. New York, Berlin, Heidelberg: Springer. (Grundlehren der Math. Wiss.250).

    MATH  Google Scholar 

  • Aubry, S. (1983) The Twist Map, the Extended Frenkel-Kontorova Model and the Devil's Staircase.Physica D 7: 240–258.

    Article  MathSciNet  Google Scholar 

  • Babuška, I. (1990) The Problem of Modeling the Elastomechanics in Engineering.Computer Methods in Mechanics and Engineering 82: 155–182.

    Article  MATH  Google Scholar 

  • Channel, P. J., and Scovel, C. (1990) Symplectic Integration of Hamiltonian Systems.Nonlinearity 3: 231–259.

    Article  MathSciNet  Google Scholar 

  • Chenciner, A. (1983) Bifurcations de difféomorphismes deR 2 au voinsinage d'un point fixe élliptique. Les Houches Summer School Proceedings, ed. R. Helleman, G. Iooss, North Holland.

  • Chirikov, B. V. (1979) A Universal Instability of Many-Dimensional Oscillator Systems.Phys. Reports 52:263–379.

    Article  MathSciNet  Google Scholar 

  • Coxeter, H. S. M. (1969)Introduction to Geometry. New York, NY, Chichester, England: John Wiley and Sons.

    MATH  Google Scholar 

  • Crandall, M. G., and Rabinowitz, P. H. (1970) Nonlinear Sturm-Liouville Eigenvalue Problems and Topological Degree.J. Math. Mech. 19:1083–1102.

    MATH  MathSciNet  Google Scholar 

  • De Vogelaére, R. (1956) Methods of Integration Which Preserve the Contact Transformation Property of the Hamiltonian Equations. Department of Mathematics, University of Notre Dame, report4.

  • Devaney, R. L. (1986)An Introduction to Chaotic Dynamical Systems. Menlo Park, CA: The Benjamin/Cummings Publishing Co., Inc.

    MATH  Google Scholar 

  • Domokos G. (1991) Computer Experiments with Elastic Chains.Newsletter of the Technical University of Budapest 9(1): 14–26.

    Google Scholar 

  • Domokos G. (1992) Secondary Bifurcations in the Euler Problem.Newsletter of the Technical University of Budapest 10(1): 4–11.

    MathSciNet  Google Scholar 

  • El Naschie, M. S. (1990) On the Suspectibility of Local Elastic Buckling to Chaos.ZAMM 70(12): 535–542.

    MATH  Google Scholar 

  • Euler, L. (1744)Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes. Lausanne:Genf (German edition: Ostwald's Klassiker der Exakten Wiss.75 Leipzig: W. Engelmann).

  • Fontich, E. and Simo, C. (1990) The Splitting of Separatrices for Analytic Diffeomorphisms.J. Ergod Theory and Dynamical Systems 10: 295–318.

    MATH  MathSciNet  Google Scholar 

  • Gáspár Zs., and Domokos, G. (1989) Global Investigation of Discrete Models of the Euler Buckling Problem.Acta Technica Acad. Sci. Hung. 102(3–4): 227–238.

    MATH  Google Scholar 

  • Greene, J. M. (1979) Method for Determining Stochastic Transition.J. Math. Phys. 20(6): 1183–1201.

    Article  Google Scholar 

  • Guckenheimer, J., and Holmes, P. (1983)Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. New York, Berlin, Heidelberg (Appl. Math. Sci. 42.)

    Google Scholar 

  • Guckenheimer, J., Myers, M. R., Wicklin, F. J., and Worfolk, P. A. (1991) dstool: A Dynamical System Toolkit with an Interactive Graphical Interface.Center for Applied Mathematics, Cornell University.

  • Hegedüs I. (1986) Analysis of lattice single layer cylindrical structures.J. of Space Structures 2: 87–89.

    Google Scholar 

  • Holmes, P. (1982) The Dynamics of Repeated Impact with a Sinusoidally Vibrating Table.J. of Sound and Vibration 84(2): 173–189.

    Article  MATH  Google Scholar 

  • Holmes, P., and Williams, R. F. (1985) Knotted Periodic Orbits in Suspensions of Smale's Horseshoe: Torus Knots and Bifurcation Sequences.Arch. Rat. Mech. Anal. 90(2): 115–194.

    Article  MATH  MathSciNet  Google Scholar 

  • Kirchhoff, G. (1859) Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes.J. für Math. (Crelle) 56: 285–313.

    MATH  Google Scholar 

  • Lazutkin, V. F., Schachmannski, I. G., and Tabanov, M. B. (1989) Splitting of Separatrices for Standard and Semistandard Mappings.Physica D 40: 235–248.

    Article  MATH  MathSciNet  Google Scholar 

  • Lichtenberg, A. J., and Lieberman, M. A. (1982)Regular and Stochastic Motion. New York, Berlin, Heidelberg: Springer. (Appl. Math. Sci.38).

    Google Scholar 

  • Love, A. E. H. (1927)A Treatise on the Mathematical Theory of Elasticity. Dover Publications, N.Y.

    MATH  Google Scholar 

  • Maddocks, J. H. (1984) Stability of Nonlinearly Elastic Rods.Arch. Rat. Mech. Anal. 85(4): 311–354.

    Article  MATH  MathSciNet  Google Scholar 

  • Maddocks, J. H. (1987) Stability and Folds.Arch. Rat. Mech. 99(4): 301–328.

    Article  MathSciNet  Google Scholar 

  • Marsden, J. E., O'Reilly, O., Wicklin, F. J., and Zombro, B. W. (1991) Symmetry, Stability, Geometric Phases and Mechanical Integrators.Nonlinear Sci. Today 1(1): 4–11,1(2): 14–21.

    MATH  MathSciNet  Google Scholar 

  • Melnikov, V. K. (1963) On the Stability of the Center for Time Periodic Perturbations.Trans. Moscow Math. Soc. 12: 1–57.

    MATH  Google Scholar 

  • Meyer, K. (1970) Generic Bifurcation of Periodic Points.Trans. Ann. Math. Soc. 149: 95–107.

    Article  MATH  Google Scholar 

  • Meyer, K. (1971) Generic Stability Properties of Periodic Points.Trans. Ann. Math. Soc. 154: 273–277.

    Article  MATH  Google Scholar 

  • Mielke, A., and Holmes, P. (1988) Spatially Complex Equilibria of Buckled Rods.Arch. Rat. Mech. 101(4): 319–348.

    Article  MATH  MathSciNet  Google Scholar 

  • Peitgen, H. O., Saupe, D., and Schmitt, K. (1981) Nonlinear Elliptic Boundary Value Problems Versus Finite Difference Approximations: Numerically Irrelevant Solutions.J. Reine u. Angew. Math. (Crelle) 322: 74–117.

    MATH  MathSciNet  Google Scholar 

  • Reinhall, P. G., Caughey, T. K., and Sorti, D. W. (1989) Order and Chaos in a Discrete Duffing Oscillator: Implications on Numerical Integration.J. Appl. Mech. 56(1): 162–167.

    Article  MATH  MathSciNet  Google Scholar 

  • Rózsa P. (1974)Linear Algebra and Applications. (In Hungarian:Lineáris algebra és alkalmazásai) Budapest: Müszaki Könyvkiadó.

    Google Scholar 

  • Thompson, J. M. T., and Virgin, L. N. (1988) Spatial Chaos and Localization Phenomena.Physics Letters A 126(8–9): 491–496.

    Article  MathSciNet  Google Scholar 

  • Weinberger, H.F. (1974)Variational Methods for Eigenvalue Approximation. CBMS Conference Series 15,SIAM, Philadelphia.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domokos, G., Holmes, P. Euler's problem, Euler's method, and the standard map; or, the discrete charm of buckling. J Nonlinear Sci 3, 109–151 (1993). https://doi.org/10.1007/BF02429861

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02429861

Key words

Navigation