Skip to main content
Log in

The combinatorial Riemann mapping theorem

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • [A]Ahlfors, L. V.,Conformal Invariants. McGraw-Hill, New York-Düsseldorf-Johannesburg, 1973.

    Google Scholar 

  • [BF]Bestvina, M. &Feighn, M., A combination theorem for negatively curved groups.J. Differential Geom., 35 (1992), 85–101.

    MathSciNet  Google Scholar 

  • [BM]Bestvina, M. &Mess, G., The boundary of negatively curved groups.J. Amer. Math. Soc., 4 (1991), 469–481.

    Article  MathSciNet  Google Scholar 

  • [BS]Beardon, A. F. &Stephenson, K., The Schwarz-Pick Lemma for circle packings.Illinois J. Math., 35 (1991), 577–606.

    MathSciNet  Google Scholar 

  • [C1]Cannon, J. W., The combinatorial structure of cocompact discrete hyperbolic groups.Geom. Dedicata, 16 (1984), 123–148.

    Article  MATH  MathSciNet  Google Scholar 

  • [C2]—, The theory of negatively curved spaces and groups, inErgodic Theory, Symbolic Dynamics, and Hyperbolic Spaces, Trieste, 1989 (T. Bedford, M. Keane, and C. Series, eds.), pp. 315–369. Oxford Univ. Press, New York, 1991.

    Google Scholar 

  • [CC]Cannon, J. W. &Cooper, D., A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three.Trans. Amer. Math. Soc., 330 (1992), 419–431.

    Article  MathSciNet  Google Scholar 

  • [CFP]Cannon, J. W., Floyd, W. J. &Parry, W. R., Squaring rectangles: the finite Riemann mapping theorem, inThe Mathematical Heritage of Wilhelm Magnus—Groups, Geometry and Special Functions, pp. 133–212. Contemp. Math., 169. Amer. Math. Soc., Providence, R.I., 1994.

    Google Scholar 

  • [CS]Cannon, J. W. & Swenson, E. L., Recognizing constant curvature discrete groups in dimension 3. Submitted toTrans. Amer. Math. Soc.

  • [D]Duffin, R. J., The extremal length of a network.J. Math. Anal. Appl., 5 (1962), 200–215.

    Article  MATH  MathSciNet  Google Scholar 

  • [DS]Doyle, P. G. &Snell, J. L.,Random Walks and Electric Networks. Carus Math. Monographs, 22. Math. Assoc. America, Washington, D.C., 1984.

    Google Scholar 

  • [F]Floyd, W. J., Group completions and limit sets of Kleinian groups.Invent. Math., 57 (1980), 205–218.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ge]Gehring, F. W., The definitions and exceptional sets for quasiconformal mappings.Ann. Acad. Sci. Fenn. Ser. A I Math., 281 (1960), 1–28.

    MathSciNet  Google Scholar 

  • [Go]Goluzin, G. M.,Geometric Theory of Functions of a Complex Variable. Transl. Math. Monographs, 26. Amer. Math. Soc., Providence, R.I., 1969.

    Google Scholar 

  • [Gr]Gromov, M., Hyperbolic groups, inEssays in Group Theory (S. M. Gersten, ed.). Math. Sci. Res. Publ., 8. Springer-Verlag, New York-Berlin, 1987.

    Google Scholar 

  • [He]He, Zheng-Xu, An estimate for hexagonal circle packings.J. Differential Geom., 33 (1991), 395–412.

    MATH  MathSciNet  Google Scholar 

  • [Hi]Hilbert, D., Über das Dirichletsche Prinzip.Math. Ann., 59 (1904), 161–186.

    Article  MATH  MathSciNet  Google Scholar 

  • [LV]Lehto, O. &Virtanen, K. I.,Quasiconformal Mappings in the Plane. Grundlehren Math. Wiss., 126. Springer-Verlag, New York-Heidelberg, 1973.

    Google Scholar 

  • [M]Minty, G. J., On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network-programming.J. Math. Mech., 15 (1966), 485–520.

    MATH  MathSciNet  Google Scholar 

  • [Pa]Parry, W., Notes on optimal weight functions (1989).

  • [Poi]Poincaré, H.,The Value of Science. Dover, New York, 1958.

    Google Scholar 

  • [Pol]Pólya, G.,How to Solve It. Doubleday, Garden City, New York, 1957.

    Google Scholar 

  • [Ri]Riemann, B.,Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen, 1851; reprinted inCollected Works of Bernhard Riemann (Heinrich Weber, ed.), pp. 3–48. Dover, New York, 1953.

  • [Ro1]Rodin, B., Schwarz's lemma for circle packings.Invent. Math., 89 (1987), 271–289.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ro2]—, Schwarz's lemma for circle packings. II.J. Differential Geom., 30 (1989), 539–554.

    MATH  MathSciNet  Google Scholar 

  • [RS]Rodin, R. &Sullivan, D., The convergence of circle packings to the Riemann mapping.J. Differential Geom., 26 (1987), 349–360.

    MathSciNet  Google Scholar 

  • [T]Thurston, W. P., The Geometry and Topology of 3-Manifolds. Notes, Princeton University, 1980.

  • [W]Weinberger, H. F., Upper and lower bounds for eigenvalues by finite difference methods.Comm. Pure Appl. Math., 9 (1956), 613–623.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by NSF research grants. We gratefully acknowledge further support by the University of Wisconsin-Madison, Brigham Young University, the University of Minnesota and the Minnesota Supercomputer Institute, the Geometry Supercomputer Project, and Princeton University during the period of this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, J.W. The combinatorial Riemann mapping theorem. Acta Math. 173, 155–234 (1994). https://doi.org/10.1007/BF02398434

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02398434

Keywords

Navigation