Skip to main content
Log in

Bose-Einstein condensation in a harmonic potential

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We examine several features of Bose-Einstein condensation (BEC) in an external harmonic potential well. In the thermodynamic limit, there is a phase transition to a spatial Bose-Einstein condensed state for dimensionD≥2. The thermodynamic limit requires maintaining constant average density by weakening the potential while increasing the particle numberN to infinity, while of course in real experiments the potential is fixed andN stays finite. For such finite ideal harmonic systems we show that a BEC still occurs, although without a true phase transition, below a certain “pseudo-critical” temperature, even forD=1. We study the momentum-space condensate fraction and find that it vanishes as\({1 \mathord{\left/ {\vphantom {1 {\sqrt N }}} \right. \kern-\nulldelimiterspace} {\sqrt N }}\) in any number of dimensions in the thermodynamic limit. InD≤2 the lack of a momentum condensation is in accord with the Hohenberg theorem, but must be reconciled with the existence of a spatial BEC inD=2. For finite systems we derive theN-dependence of the spatial and momentum condensate fractions and the transition temperatures, features that may be experimentally testable. We show that theN-dependence of the 2D ideal-gas transition temperature for a finite system cannot persist in the interacting case because it violates a theorem due to Chester, Penrose, and Onsager.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,Science 269, 198 (1995).

    ADS  Google Scholar 

  2. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle,Phys. Rev. 75, 3969 (1995).

    ADS  Google Scholar 

  3. C. C. Bradley, C. A. Sachett, J. J. Tollett, and R. G. Hulet,Phys. Rev. 75, 1687 (1995).

    ADS  Google Scholar 

  4. M. F. M. Osborne,Phys. Rev. 76, 396 (1949).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. J. M. Ziman,Phil. Mag. 44, 548 (1953).

    MATH  Google Scholar 

  6. D. L. Mills,Phys. Rev. 134, A306 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. F. Goble and L. E. H. Trainor,Can. J. Phys. 44, 27 (1966);Phys. Rev. 157, 167 (1967).

    ADS  Google Scholar 

  8. D. A. Kruger,Phys. Rev. 172, 211 (1968).

    Article  ADS  Google Scholar 

  9. Y. Imry,Ann. Phys. 51, 1 (1969).

    Article  ADS  Google Scholar 

  10. M. N. Barber, inPhase Transitions and Critical Phenomena, ed. C. Domb and M. S. Green (Academic Press, London, 1983), Vol. 8, p. 146.

    Google Scholar 

  11. S. Grossmann and M. Holthaus,Z. Naturforsch. 50a, 323 (1995);Z. Phys. B 97, 319 (1995).

    Google Scholar 

  12. W. J. Mullin, “Pseudo-Bose Condensation in Finite Ideal Systems” unpublished report, 1981.

  13. W. Ketterle and N. J. van Druten,Phys. Rev. A 54, 656 (1996).

    Article  ADS  Google Scholar 

  14. P. C. Hohenberg,Phys. Rev. 158, 383 (1967).

    Article  ADS  Google Scholar 

  15. C. V. Chester, inLectures in Theoretical Physics, ed. K. T. Mahanthappa (Gordon and Breach, Science Publishers, Inc., New York, 1968), Vol. 11B, p. 253

    Google Scholar 

  16. C. V. Chester, M. E. Fisher, and N. D. Mermin,Phys. Rev. 185, 760 (1969).

    Article  ADS  Google Scholar 

  17. O. Penrose and L. Onsager,Phys. Rev. 104, 576 (1956).

    Article  ADS  MATH  Google Scholar 

  18. J. J. Rehr and N. D. Mermin,Phys. Rev. B 185, 3160 (1970).

    Article  ADS  Google Scholar 

  19. R. Masut and W. J. Mullin,Am. J. Phys. 47, 493 (1979).

    Article  ADS  Google Scholar 

  20. S. deGroot, G. J. Hooyman, and C. A. ten Seldam,Proc. R. Soc. (London) A 203, 266 (1950).

    Article  ADS  Google Scholar 

  21. C. E. Campbell, J. G. Dash, and M. Schick,Phys. Rev. 26, 966 (1971).

    ADS  Google Scholar 

  22. V. Bagnato, D. Pritchard, and D. Kleppner,Phys. Rev. A 35, 4354 (1987).

    Article  ADS  Google Scholar 

  23. V. Bagnato and D. Kleppner,Phys. Rev. A 44, 7439 (1991).

    Article  ADS  Google Scholar 

  24. S. Grossmann and M. Holthaus,Phys. Lett. A 208, 188 (1995);Z. Naturforsch. 50a, 921 (1995).

    Article  ADS  Google Scholar 

  25. W. Krauth,Phys. Rev. Letters 77, 3695 (1996).

    Article  ADS  Google Scholar 

  26. M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, preprint.

  27. H. Haugerud and F. Ravndal, cond-mat/9509041.

  28. H. Haugerud, T. Haugset, and F. Ravndal, cond-mat/9605100; cond-mat/9611061

  29. K. Kirsten and D. J. Toms,Phys. Lett. B 368, 119 (1996); cond-mat/9604031; condmat/9607047; cond-mat/9608032.

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Widom,Phys. Rev. 168, 150 (1968).

    Article  ADS  Google Scholar 

  31. F. London,Superfluids (Dover, New York, 1964), Vol. II, p. 203; J. E. Robinson,Phys. Rev. 83, 678 (1951).

    Google Scholar 

  32. M. Abramowitz and I. A. StegunHandbook of Mathematical Functions (Dover, New York, 1972).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullin, W.J. Bose-Einstein condensation in a harmonic potential. J Low Temp Phys 106, 615–641 (1997). https://doi.org/10.1007/BF02395928

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02395928

Keywords

Navigation