Skip to main content
Log in

New membrane assembly in IgE receptor-mediated exocytosis

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The presence of excess membrane has been observed in the secretory granules of mast cells activated via the physiological mechanism of IgE receptor-mediated exocytosis. This excess membrane is the result of ade novo assembly from phospholipid, cholesterol, and other membrane components stored in the quiescent granule. Following receptor stimulation, membrane bilayer structures of varying size and shape can be seen in the subperigranular membrane space where the perigranular membrane has lifted away from the granule matrix. Vesicles as small as 25 nm in outer diameter are frequently found beneath the perigranular membrane at the site of granule fusion. Membrane in the form of elongated vesicles, tubes, or sheets has also been observed. The wide variation in size and shape of the newly assembled membrane may reflect the spontaneity of the entropy-driven membrane generation process and the fluid characteristic of the biological membrane in general. Fusion of the newly assembled membrane with the perigranular membrane enables the activated granule to enlarge. This rapid expansion process of the perigranular membrane may be the principal mechanism by which an activated granule can achieve contact with the plasma membrane in order to generate pore formation. The fact that new membrane assembly also occurs in the IgE receptor-mediated granule exocytosis, supports our observation thatde novo membrane generation is an inherent step in the mechanism of mast cell granule exocytosis. Whether new membrane assembly is a common step in the mechanism of secretory granule exocytosis in general, must await careful reinvestigation of other secretory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albers, R. W., Chock, E. S., Donlon, M. A., &Chock, S. P. (1985) Localization of calmodulin in the mast cell granules.Fed. Proc. 44, 984 (abstr. 3353).

    Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. &Watson, J. D. (1983)Molecular biology of the cell. p. 350. New York and London: Garland Publishing Inc.

    Google Scholar 

  • Andreoli, T. E. (1974) Planar lipid bilayer membranes. InMethods in Enzymology (edited byFleischer, S. &Packer A.) Vol. 32, pp. 513–7. New York: Academic Press.

    Google Scholar 

  • Blaschko, H., Firemark, H., Smith, A. D. &Winkler, H. (1967) Lipids of the adrenal medulla. Lysolecithin, a characteristic constituent of chromaffin granules.Biochem. J. 104, 545–9.

    CAS  PubMed  Google Scholar 

  • Broom, G. D. &Haegermark, O. (1965) A study on morphological changes and histamine release induced by compound 48/80 in rat peritoneal mast cells.Exptl. Cell Res. 40, 637–54.

    Article  Google Scholar 

  • Bloom, G. D. &Chakravarty, N. (1970) Time course of anaphylactic histamine release and morphological changes in rat peritoneal mast cells.Acta Physiol. Scand. 78, 410–9.

    CAS  PubMed  Google Scholar 

  • Bloom, G. D., Fredholm, B. &Haegermark, O. (1967) Studies on the time course of histamine release and morphological changes induced by histamine liberators in rat peritoneal mast cells.Acta. Physiol, Scand. 71, 270–82.

    CAS  Google Scholar 

  • Chandler, D. E. &Heuser, J. E. (1980) Arrest of membrane fusion events in mast cells by quick-freezing.J. Cell Biol. 86, 666–74.

    Article  CAS  PubMed  Google Scholar 

  • Chock, E. S., Donlon, M. A., Fiori, C. E. &Catravas, G. N. (1982) Elemental analysis for calcium in rat peritoneal mast cell granules.J. Cell Biol. 95, 409a.

    Google Scholar 

  • Chock, S. P., Donlon, M. A. &Chock, E. S. (1984) Localization of calmodulin in the mast cell granules.Fed. Proc. 43, 1934 (abstr. 3026).

    Google Scholar 

  • Chock, S. P. &Chock, E. S. (1985) A two-stage fusion model for secretion.Fed. Proc. 44, 1324 (abstr. 5341).

    Google Scholar 

  • Chock, S. P. &Schmauder-Chock, E. A. (1985) Evidence ofde novo membrane generation in the mechanism of mast cell secretory granule activation.Biochem. Biophys. Res. Commun. 132, 134–9.

    Article  CAS  PubMed  Google Scholar 

  • Chock, S. P. &Schmauder-Chock, E. (1987) The mast cell granules: A phospholipid source for prostaglandins synthesis. InProstaglandins and Lipid Metabolism in Radiation Injury (edited byWalden, T. L. &Hughes H. N.), pp. 127–32. New York: Plenum Press.

    Google Scholar 

  • Chock, S. P. &Schmauder-Chock, E. A. (1988) Synthesis of prostaglandins and eicosanoids by the mast cell secretory granule.Biochem. Biophys. Res. Commun. 156, 1308–15.

    Article  CAS  PubMed  Google Scholar 

  • Chock, S. P. &Schmauder-Chock, E. A. (1989) Phospholipid storage in the secretory granule of the mast cell.J. Biol. Chem. 264, 2862–8.

    CAS  PubMed  Google Scholar 

  • Chock, S. P. & Schmauder-Chock, E. A. (1990) Minireview. A new model for the mechanism of stimulus-secretion coupling.Biofactors (in press).

  • Curtis, S. K., Cowden, R. R. &Nagel, J. W. (1979) Ultrastructural and histochemical features of the thymus glands of the adult lungless salamander,Plethodon glutinosus (Caudata: Plethodontidae).J. Morphol. 160, 241–74.

    Article  CAS  PubMed  Google Scholar 

  • Danielli, J. F. &Davson, H. (1935) A contribution to the theory of permeability of thin films.J. Cell. Comp. Physiol. 5, 495–508.

    Article  CAS  Google Scholar 

  • Douglas, W. W. (1974) Involvement of calcium in exocytosis and exocytosis-vesiculation sequence.Biochem. Soc. Symp. 39, 1–28.

    CAS  PubMed  Google Scholar 

  • Fonio, A. (1951) Uber das funktionelle verhalten der isolierten Strukturelements der Thrombocyten, des Hyalomers und des Granulomers.Acta Haemat. 6, 207–12.

    Article  CAS  PubMed  Google Scholar 

  • Frank, H. S. &Evans, M. W. (1945) Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes.J. Chem. Phys. 13, 507–32.

    Article  CAS  Google Scholar 

  • Helle, K. B. (1973) Biochemical studies of the chromaffin granule. III. Redistribution of lipid phosphate, dopamine-beta-hydroxylase and chromogranin A after freezing and thawing of the isolated granule membranes.Biochim. Biophys. Acta 318, 167–80.

    CAS  PubMed  Google Scholar 

  • Henderson, W. R. &Chi, E. Y. (1985) Ultrastructural characterization and morphometric analysis of human eosinophil degranulation.J. Cell Sci. 73, 33–48.

    CAS  PubMed  Google Scholar 

  • Huang, C. (1969) Studies on phosphatidylcholine vesicles. Formation and physical characteristics.Biochemistry 8, 344–52.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C. &Mason, J. T. (1978) Geometric packing constraints in egg phosphatidylcholine vesicles.Proc. Natl. Acad. Sci. USA 75, 308–10.

    CAS  PubMed  Google Scholar 

  • Ishizaka, K. (1985) Twenty years with IgE: From the identification of IgE to regulatory factors for the IgE response.J. Immunol. 135(1), i-x.

    CAS  PubMed  Google Scholar 

  • Ishizaka, K., Tomioka, H. &Ishizaka, T. (1970) Mechanism of passive sensitization. I. Presense of IgE and IgG molecules on human leukocytes.J. Immunol. 105, 1459–67.

    CAS  PubMed  Google Scholar 

  • Ishizaka, K. (1982) Biochemical analysis of triggering signals induced by bridging of IgE receptors.Fed. Proc. 41, 17–21.

    CAS  PubMed  Google Scholar 

  • Ishizaka, T., Sterk, A. R., Daeron, M., Becker, E. L. &Ishizaka, K. (1985) Biochemical analysis of desensitization of mouse mast cells.J. Immunol. 135, 492–501.

    CAS  PubMed  Google Scholar 

  • Kagey-sobotka, A., Macglashen, D. W. &Lichtenstein, L. M. (1982) Role of receptor aggregation in triggering IgE-mediated reactions.Fed. Proc. 41, 12–7.

    CAS  PubMed  Google Scholar 

  • Kanwar, U. &Kansal, M. (1980) Cytochemical studies on the prostate glands of the trematodes,Paramphistomum epiclitum andParadistomoides orientalis.J. Helminthol. 54, 263–6.

    Article  CAS  PubMed  Google Scholar 

  • Kruger, P. G., Lagunoff, D. &Wan, H. (1980) Isolation of rat mast cell granules with intact membranes.Exp. Cell. Res. 129, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Kowk, R. &Evans, E. (1981) Thermoelasticity of large lecithin bilayer membrane vesicles.Biophys. J. 35, 637–52.

    Article  Google Scholar 

  • Lagunoff, D. (1973) Membrane fusion during mast cell secretion.J. Cell Biol. 57, 252–9.

    Article  CAS  PubMed  Google Scholar 

  • Langmuir, I. &Waugh, E. F. (1938) The adsorption of proteins at oil-water interfaces and artificial proteinlipoid membranes.J. Gen. Physiol. 21, 745–55.

    Article  CAS  Google Scholar 

  • Lawson, D. (1980) Rat peritoneal mast cells: a model system for studying membrane fusion.Membrane-Membrane Interactions (edited byGilula, N. B.), pp. 27–44. New York: Raven Press.

    Google Scholar 

  • Lawson, D., Raff, M. C., Gomperts, B., Fewtrell, C. &Gilula, N. B. (1977) Molecular events during membrane fusion.J. Cell Biol. 72, 242–59.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg, D., Freire, E., Schmidt, C. F., Barenholz, Y., Felgner, P. L. &Thompson, T. E. (1981) Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipalmitoly-phosphatidylcholine single lamellar vesicles.Biochemistry 20, 3462–67.

    Article  CAS  PubMed  Google Scholar 

  • Marcus, A. J., Ulman, H. L. &Safier, L. B. (1969) Lipid composition of subcellular particles of human blood platelets.J. Lipid Res. 10, 108–14.

    CAS  PubMed  Google Scholar 

  • Metcalfe, D. D., Kaliner, M., &Donlon, M. A. (1981) The mast cell.CRC Crit. Rev. Immunol. 3, 23–74.

    CAS  Google Scholar 

  • Metzger, H., Goetze, A., Kanellopoulos, J., Holowka, D. &Fewtrell, C. (1982) Nature of the high-affinity mast cell receptor for IgE.Fed. Proc. 41, 8–11.

    CAS  PubMed  Google Scholar 

  • Meuller, P. O., Rudin, D. O., ti Tien, H. &Wescott, W. C. (1962) Reconstitution of excitable cell membrane structurein vitro.Circulation,26, 1167–70.

    Google Scholar 

  • Mylrote, R. &Konig, H. (1971) Soluble acidic lipoprotein components of adrenomedullary chromaffin granules. Relations to chromagranins.FEBS Let. 12, 121–4.

    Article  Google Scholar 

  • Nagpal, N. &Kanwar, U. (1981) The poison gland in the centipedeOtostigmus Ceylonicus: Morphology and cytochemistry.Toxicon 19, 898–901.

    Article  CAS  PubMed  Google Scholar 

  • Ohki, S. (1984) Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion.J. Membrane Biol. 77, 265–75.

    Article  CAS  Google Scholar 

  • Palade, G. (1975) Intracellular aspects of the process of protein synthesis.Science 189, 347–58.

    CAS  PubMed  Google Scholar 

  • Plattner, H., Matt, H., Kersken, H., Haacke, B. &Sturzl, R. (1984) Synchronous exocytosis inParamecium cells. I. A novel approach.Exp. Cell Res. 151, 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Rohlich, P., Anderson, P. &Uvnas, B. (1971) Electron microscope observations on compound 48/80-induced degranulation in rat mast cells.J. Cell Biol. 51, 465–83.

    Article  CAS  PubMed  Google Scholar 

  • Rothman, J. E. &Lenard, J. (1977) Membrane asymmetry.Science 195, 743–53.

    CAS  PubMed  Google Scholar 

  • Schmauder-Chock, E. A. &Chock, S. P. (1987a) Mechanism of secretory granule exocytosis: Can granule enlargement precede pore formation?Histochem. J. 19, 413–8.

    Article  CAS  PubMed  Google Scholar 

  • Schmauder-Chock, E. A. &Chock, S. P. (1987b) New membrane assembly during exocytosis.Proceedings of the 45th Annual Meeting of the Electron Microscopy Society of America (edited byBailey, G. W.), pp. 782–3. San Francisco: San Francisco Press.

    Google Scholar 

  • Schmauder-Chock, E. A. &Chock, S. P. (1989) The localization of cyclo-oxygenase and prostaglandin E2 in the secretory granule of the mast cell.J. Histochem. Cytochem. 37, 1319–28.

    CAS  PubMed  Google Scholar 

  • Sheetz, M. P. &Chan, S. I. (1972) Effect of sonication on the structure of lecithin bilayers.Biochemistry 11, 4573–81.

    Article  CAS  PubMed  Google Scholar 

  • Simson, J. A. V., Gall, B. J. &Spicer, S. S. (1973) Histochemical evidence for lipoidal material in secretory granules of rat salivary glands.Histochem. J. 5, 239–54.

    Article  CAS  PubMed  Google Scholar 

  • Small, D. M. (1967) Phase equilibria and structure of dry and hydrated egg lecithin.J. Lipid Res. 8, 551–7.

    CAS  PubMed  Google Scholar 

  • Tanford, C. (1980)The hydrophobic effect: Formation of micelles and biological membranes. 2nd edn. pp. 1–127. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Uvnas, B. (1982) Mast Cell Granules.The Secretory Granules (edited byPoisner, A. M. &Trifaro, J. M.), pp. 357–84. Amsterdam: Elsevier Biomedical Press.

    Google Scholar 

  • White, J. G. &Krivit, W. (1966) The ultrastructural localization and release of platelet lipids.Blood 27, 167–86.

    CAS  PubMed  Google Scholar 

  • Wilgram, G. F. &Kennedy, E. P. (1963) Intracellular distribution of some enzymes catalyzing reactions in the biosynthesis of complex lipids.J. Biol. Chem. 238, 2615–9.

    CAS  PubMed  Google Scholar 

  • Yeagle, P. L., Hutton, W. C., Martin, R. B., Sears, B. &Huang, C. (1976) Transmembrane asymmetry of vesicle lipids.J. Biol. Chem. 251, 2110–12.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmauder-Chock, E.A., Chock, S.P. New membrane assembly in IgE receptor-mediated exocytosis. Histochem J 22, 215–226 (1990). https://doi.org/10.1007/BF02386008

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02386008

Keywords

Navigation