, Volume 10, Issue 3-4, pp 221-225

Nano-composite solid polymer electrolytes for solid state ionic devices

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Recent research efforts to improve the ambient temperature conductivity in polyethylene oxide (PEO) based solid polymer electrolytes have been directed towards the incorporation of ultra-fine nano-sized particles of ceramic fillers such as Al2O3, γ-LiAlO2, SiO2 and TiO2 into the polymer electrolyte. In these PEO based nano-composite polymer electrolytes, conductivity enhancements of up to two orders of magnitude have been achieved. Thermal, electrical conductivity and dielectric relaxation measurements performed on several nano-composite polymer electrolyte systems have shown that the degree of enhancement depends primarily on the grain size. In this paper, results of three nano-composite polymer electrolyte systems, PEO:LiTFSI:Al2O3, PEO:LiTf:Al2O3 and PEO:LiTf: SiO2 are discussed as representative examples. It is suggested that the conductivity enhancement is due to the creation of additional sites and favourable conduction pathways for ionic transport through Lewis acidbase type interactions between the filler surface groups (H/OH) and the ionic species.

Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Channai, India, Nov. 28–30, 2003.