Skip to main content
Log in

From one-dimensional to infinite-dimensional dynamical systems: Ideal turbulence

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

There is a very short chain that joins dynamical systems with the simplest phase space (real line) and dynamical systems with the “most complicated” phase space containing random functions, as well. This statement is justified in this paper. By using “simple” examples of dynamical systems (one-dimensional and two-dimensional boundary-value problems), we consider notions that generally characterize the phenomenon of turbulence—first of all, the emergence of structures (including the cascade process of emergence of coherent structures of decreasing scales) and self-stochasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Vul, Ya. G. Sinai, and K. M. Khanin, “Feigenbaum’s universality and thermodynamical formalism,”Usp. Mat. Nauk,39, No. 3, 3–37 (1984).

    MathSciNet  Google Scholar 

  2. D. Ruelle and F. Takens, “On the nature of turbulence,”Commun. Math. Phys.,20, 167–192 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Y. Li and J. Yorke, “Period three implies chaos,”Am. Math. Mon.,82, 985–992 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Feigenbaum, “Quantitative universality for a class of nonlinear transformations,”J. Statist. Phys.,19, 25–52 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Collet and C. Tresser, “Itération d’endomorphismes et groupe de renormalisation,”J. Phys. C5, 25 (1978).

  6. M. Feigenbaum, “The universal metric properties of nonlinear transformations,”J. Statist. Phys.,21, 669–706 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Feigenbaum, “Universality in the behavior of nonlinear systems,”Usp. Mat. Nauk,38, No. 2, 343–374 (1983).

    Google Scholar 

  8. A. N. Sharkovsky, “How complicated can be one-dimensional dynamical systems: descriptive estimates of sets,”Dynam. Syst. Ergod. Theory,23, 447–453 (1989).

    Google Scholar 

  9. A. N. Sharkovsky, “Oscillations described by autonomous difference and difference-differential equations,” in:Proc. VIII ICNO (Prague, 1978), Academia, Prague (1979), pp. 1073–1078.

    Google Scholar 

  10. A. N. Sharkovsky, “‘Dry’ turbulence,” in:Brief Communications of the International Congress of Mathematicians (Warsaw, August 16–24, 1983), X, Sect. 12, Warsaw (1983).

  11. A. N. Sharkovsky, “Dry turbulence,” in:Plasma Theory and Nonlinear and Turbulence Processes in Physics, World Scientific (1984), pp. 1621–1626.

  12. A. N. Sharkovsky and A. G. Sivak, “Universal ordering and universal rate of bifurcations of solutions of difference-differential equations,” in:Approximate and Qualitative Methods in the Theory of Difference-Differential Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1983), pp. 98–105.

    Google Scholar 

  13. A. N. Sharkovsky, Yu. L. Maistrenko, and E. Yu. Romanenko,Difference Equations and Their Applications, Kluwer, Dordrecht 1993.

    Google Scholar 

  14. A. N. Sharkovsky, Yu. L. Maistrenko, and E. Yu. Romanenko, “Attractors of difference equations and turbulence,” in:Plasma Theory and Nonlinear and Turbulent Processes in Physics,1, World Scientific, Singapore (1987), pp. 520–536.

    Google Scholar 

  15. E. Yu. Romanenko and A. N. Sharkovsky, “Qualitative investigation of some boundary-value problems: sophisticated oscillatory regimes,” in:Functional-Differential Equations and Their Applications to Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987), pp. 74–87.

    Google Scholar 

  16. A. N. Sharkovsky and E. Yu. Romanenko, “Problems of turbulence theory and iteration theory,” in:Proc. ECIT-91, World Scientific, Singapore (1992), pp. 241–252.

    Google Scholar 

  17. A. N. Sharkovsky and E. Yu. Romanenko, “Ideal turbulence: attractors of deterministic systems may lie in the space of random fields,”Int. J. Bifurc. Chaos,2, No. 1, 31–36 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. N. Sharkovsky and E. Yu. Romanenko, “Self-stochasticity: attractors of deterministic problems may contain random functions,”Dopov. Akad. Nauk Ukr., No. 10, 33–37 (1992).

    Google Scholar 

  19. A. N. Sharkovsky, Yu. L. Maistrenko, Ph. Deregel, and L. O. Chua, “Dry turbulence from a time-delayed Chua’s circuit,” in:Chua’s Circuit: A Paradigm for Chaos, World Scientific, Singapore (1993), pp. 993–1041.

    Google Scholar 

  20. E. Yu. Romanenko and M. B. Vereikina, “Simulation of spatial-temporal chaos: the simplest mathematical patterns and computer graphics,”Ukr. Mat. Zh.,45, No. 10, 1398–1410 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. N. Sharkovsky, “Chaos from a time-delayed Chua’s circuit,”IEEE Trans. Circuits Syst. I,40, No. 10, 781–783 (1993).

    Article  MATH  Google Scholar 

  22. A. N. Sharkovsky, “Ideal turbulence in an idealized time-delayed Chua’s circuit,”Int. J. Bifurc. Chaos,4, No. 2, 303–309 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. N. Sharkovsky and A. G. Sivak, “Universal phenomena in solution bifurcation of some boundary-value problems,”J. Nonlin. Math. Phys.,1, No. 2, 147–157 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Yu. Romanenko and A. N. Sharkovsky, “Self-stochasticity in dynamical systems as a scenario for deterministic spatial-temporal chaos,”Chaos Nonlin. Mech., Ser. B,4, 172–181 (1995).

    Google Scholar 

  25. E. Yu. Romanenko, “On chaos in continuous difference equations,”World Scientific Series in Appl. Anal.,4, 617–630 (1995).

    MathSciNet  Google Scholar 

  26. E. Yu. Romanenko, A. N. Sharkovsky, and M. B. Vereikina, “Self-structuring and self-similarity in boundary-value problems,”Int. J. Bifurc. Chaos,5, No. 5, 1407–1418 (1995); also in:Thirty Years after Sharkovskii’s Theorem: New Perspectives, World Scientific, Singapore (1995), pp. 145–156.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. N. Sharkovsky, Ph. Deregel, L. O. Chua, “Dry turbulence and period-adding phenomena from a 1-D map with time delay,”Int. J. Bifurc. Chaos,5, No. 5, 1283–1302 (1995); also in:Thirty Years after Sharkovskii’s Theorem: New Perspectives, World Scientific, Singapore (1995), pp. 21–40.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. N. Sharkovsky, “Universal phenomena in some infinite-dimensional dynamical systems,”Int. J. Bifurc. Chaos,5, No. 5, 1419–1425 (1995); also in:Thirty Years after Sharkovskii’s Theorem: New Perspectives, World Scientific, Singapore (1995), pp. 157–164.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Gorodetski and Yu. Hyashenko, “Minimal and strange attractors,”Int. J. Bifurc. Chaos,6, No. 6, 1177–1183 (1996).

    Article  Google Scholar 

  30. N. S. Krylov,Justification of Statistical Physics [in Russian], Academy of Sciences of the USSR, Moscow 1950.

    Google Scholar 

  31. M. Born, “Vortersagbarkeit in der klassischen Mechanik,”Z Phys.,153, 372–388 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  32. I. Prigogine and I. Stengers,Entre le Temps et I’éternité, Coll. Champs, Flammarion, Paris (1992).

    Google Scholar 

  33. J. Graczyk and G. Swiatek,Hyperbolicity in the Real Quadratic Family, Preprint No. PM 192, PennState University (1995).

  34. M. V. Jakobson, “Absolutely continuous invariant measures for one-parameter families of one dimensional maps,”Commun. Math. Phys.,81, 39–88 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Martens and T. Nowicki,Invariant Measures for Typical Quadratic Maps, Preprint No. 1996/6/ SUNY, Stony Brook (1996).

  36. S. F. Kolyada and A. G. Sivak, “Universal constants for one-parameter families of mappings,” in:Oscillations and Stability of Solutions of Difference-Differential Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1992), pp. 53–60.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanenko, E.Y., Sharkovsky, A.N. From one-dimensional to infinite-dimensional dynamical systems: Ideal turbulence. Ukr Math J 48, 1817–1842 (1996). https://doi.org/10.1007/BF02375370

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375370

Keywords

Navigation