Skip to main content
Log in

Evaluation of renormalised entropy for risk stratification using heart rate variability data

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Standard time and frequency parameters of heart rate variability (HRV) describe only linear and periodic behaviour, whereas more complex relationships cannot be recognised. A method that may be capable of assessing more complex properties is the non-linear measure of ‘renormalised entropy’. A new concept of the method, REAR, has been developed, based on a non-linear renormalisation of autoregressive spectral distributions. To test the hypothesis that renormalised entropy may improve the result of high-risk stratification after myocardial infarction, it is applied to a clinical pilot study (41 subjects) and to prospective data of the St George's Hospital post-infarction database (572 patients). The study shows that the new REAR method is more reproducible and more stable in time than a previously introduced method (p<0.001). Moreover, the results of the study confirm the hypothesis that on average, the survivors have negative values of REAR (−0.11±0.18), whereas the non-survivors have positive values (0.03±0.22, p<0.01). Further, the study shows that the combination of an HRV triangular index and REAR leads to a better prediction of sudden arrhythmic death than standard measurements of HRV. In summary, the new REAR method is an independent measure in HRV analysis that may be suitable for risk stratification in patients after myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Goldberger, A. L., Rigney, D. R., Mietus, J., Antman, E. M., andGreenwald, S. (1988): ‘Nonlinear dynamics in sudden cardiac death syndrome: heartrate oscillations and bifurcations’,Experientia,44, pp. 983–987

    Article  Google Scholar 

  • Haykin, S. (1983): ‘Nonlinear methods of spectral analysis’ (Springer Verlag, Berlin), pp. 73–123.

    Google Scholar 

  • Klimontovich, Y. L. (1991): ‘Turbulent motion and structure of chaos’ (Kluwer Academic Publishers, Dordrecht)

    Google Scholar 

  • Kopitzki, K., Warnke, P. C. andTimmer, J. (1998): ‘Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy’,Phys. Rev. E. 58, pp. 4859–4864

    Article  Google Scholar 

  • Kurths, J., Voss, A., Witt, A., Saparin, P., Kleiner, H. J., andWessel, N., (1995): ‘Quantitative analysis of heart rate variability’,Chaos,5, pp. 88–94

    Article  Google Scholar 

  • Makikallio, T. H., Seppanen, T., Airaksinen, K. E., Koistinen, J., Tulppo, M. P., Peng, C. K., Goldberger, A. L., andHuikuri, H. V. (1997): ‘Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction’,Am. J. Cardiol.,80, pp. 779–783

    Google Scholar 

  • Saparin, P., Witt, A., Kurths, J., andAnishenko, V. (1994): ‘The renormalized entropy- an appropriate complexity measure’,Chaos Solitons Fractals,4, pp. 1907–1916

    Article  Google Scholar 

  • Schafer, C., Rosenblum, M. G., Kurths, J., andAbel, H. H. (1998): ‘Heartbeat synchronized with ventilation’,Nature,392, pp. 239–240

    Google Scholar 

  • Schreiber, T. (1997): ‘Detecting and analysing nonstationarity in a time series using nonlinear cross predictions’,Phys. Rev. Lett.,78, pp. 843–847

    Article  Google Scholar 

  • Task Force Europ. Soc. Cardiol. North Am. Soc. Pacing Electrophysiol. (1996): ‘Heart rate variability, standards of measurement, physiological interpretation, and clinical use’,Circulation,93, pp. 1043–1065

    Google Scholar 

  • Voss, A., Kurths, J., andFiehring, H. (1992): ‘Frequency domain analysis of the highly amplified ECG on basis of maximum entropy spectral estimation’,Med. Biol. Eng. Comput.,30, pp. 277–282

    Google Scholar 

  • Voss, A., Dietz, R., Fiehring, H., Kleiner, H. J., Kurths, J., Saparin, P., Vossing, H. J. andWitt, A. (1993): ‘High resolution ecg, heart rate variability and nonlinear dynamics: tools for high risk stratification’,Comput. Cardiol. pp. 261–264

  • Voss, A., Kurths, J., Kleiner, H. J., Witt, A., Wessel, N., Saparin, P., Osterziel, K. J., Schurath, R., andDietz, R. (1996): ‘The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death’,Cardiovasc. Res.,31, pp. 419–433

    Article  Google Scholar 

  • Voss, A., Hnatkova, K., Wessel, N., Kurths, J., Sander, A., Schirdewan, A., Camm, A. J., andMalik, M. (1998): ‘Multiparametric analysis of heart rate variability used for risk stratification among survivors of acute myocardial infarction’,Pacing Clin. Electrophysiol.,21, pp. 186–192

    Google Scholar 

  • Wessel, N., Voss, A., Kurths, J., Saparin, P., Witt, A., Kleiner, H. J., andDietz, R. (1994): ‘Renormalised entropy: a new method of nonlinear dynamics for the analysis of heart rate variability’,Comput. Cardiol., pp. 137–140

  • Wessel, N., Ziehmann, CH., Kurths, J., Meyerfeldt, U., Schirdewan, A., andVoss, A. (2000): ‘Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates’,Phys. Rev. E.,61, pp. 733–739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Wessel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessel, N., Voss, A., Kurths, J. et al. Evaluation of renormalised entropy for risk stratification using heart rate variability data. Med. Biol. Eng. Comput. 38, 680–685 (2000). https://doi.org/10.1007/BF02344875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344875

Keywords

Navigation