Skip to main content
Log in

Quantum logics and hilbert space

  • Part III. Invited Papers Dedicated to Constantin Piron
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Starting with a quantum logic (a σ-orthomodular poset) L. a set of probabilistically motivated axioms is suggested to identify L with a standard quantum logic L(H) of all closed linear subspaces of a complex, separable, infinite-dimensional Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mackey,The Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).

    Google Scholar 

  2. M. Maczyński, “A remark on Mackey's axiom system for quantum mechanics,”Bull. Acad. Pol. Sci. 15, 583–587 (1967).

    Google Scholar 

  3. V. Varadarajan,Geometry of Quantum Theory (Van Nostrand, Princeton, New Jersey, 1968).

    Google Scholar 

  4. P. Pták and S. Pulmannová,Orthomodular Structures as Quantum Logics (Kluwer, Dordrecht, 1991).

    Google Scholar 

  5. E. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1981).

    Google Scholar 

  6. S. P. Gudder, “A superposition principle in physics,”J. Math. Phys. 11, 1037–1040 (1970).

    Google Scholar 

  7. P. Dirac,The Principles of Quantum Mechanics (Clarendon, Oxford, 1980).

    Google Scholar 

  8. R. Mayet and S. Pulmannová, “Nearly orthosymmetric ortholattices and Hilbert spaces,” this issue.

  9. J. Hedlíková and S. Pulmannová, “Orthogonality spaces and atomistic orthocomplemented lattices,”Czech. J. Math. 41, 8–23 (1991).

    Google Scholar 

  10. C. Piron, “Axiomatique quantique,”Helv. Phys. Acta 37, 439–468 (1964).

    Google Scholar 

  11. F. Maeda and S. Maeda,Theory of Symmetric Lattices (Springer, New York, 1970).

    Google Scholar 

  12. W. Wilbur, “On characterizing the standard quantum logics,”Trans. Am. Math. Soc. 233, 265–282 (1977).

    Google Scholar 

  13. A. Gleason, “Measures on the closed subspaces of a Hilbert space,”J. Math. Mech. 6, 885–894 (1957).

    Google Scholar 

  14. N. Zierler, “Axioms for nonrelativistic quantum mechanics,”Pacific J. Math. 19, 1151–1169 (1961).

    Google Scholar 

  15. N. Zierler, “On the lattice of closed subspaces of Hilbert space,”Pacific J. Math. 19, 583–586 (1966).

    Google Scholar 

  16. S. P. Gudder and C. Piron, “Observables and the field in quantum mechanics,”J. Math. Phys. 12, 1583–1588 (1971).

    Google Scholar 

  17. S. P. Gudder, “Quantum logics, physical space, position observables, and symmetry,”Rep. Math. Phys. 4, 193–202 (1973).

    Google Scholar 

  18. M. Maczyński, “Hilbert space formalism of quantum mechanics without the Hilbert space axiom,”Rep. Math. Phys. 3, 209–219 (1972).

    Google Scholar 

  19. M. Maczyński, “The field of real numbers in axiomatic quantum mechanics,”J. Math. Phys. 14, 1469–1471 (1973).

    Google Scholar 

  20. P. Delyiannis, “Vector space models of abstract quantum logics,”J. Math. Phys. 14, 249–253 (1973).

    Google Scholar 

  21. A. Cirelli and P. Cotta-Ramusino, “On the isomorphism of a quantum logic with the logic of the projections in a Hilbert space,”Int. J. Theor. Phys. 8, 11–19 (1973).

    Google Scholar 

  22. A. Cirelli, P. Cotta-Ramusino, and E. Novati, “On the isomorphism of a quantum logic with the logic of the projections in a Hilbert space II,”Int. J. Theor. Phys. 11, 135–144 (1974).

    Google Scholar 

  23. H. Szambien, “Characterization of projection lattices of Hilbert spaces,”Int. J. Theor. Phys. 25, 939–944 (1986).

    Google Scholar 

  24. H. Szambien, “Topological projective geometries,”J. Geometry 26, 163–171 (1986).

    Google Scholar 

  25. M. MacLaren, “Atomic orthocomplemented lattices,”Pacific J. Math. 14, 597–612 (1964).

    Google Scholar 

  26. G. Birkhoff and J. von Neumann, “The logic of quantum mechanics,”Ann. Math. 37, 823–834 (1936).

    Google Scholar 

  27. R. Mayet, “Orthosymmetric ortholattices,”Proc. Am. Math. Soc. 114, 295–306 (1992).

    Google Scholar 

  28. H. Gross and M. Künzi, “On a class of orthomodular quadratic spaces,”Enseign. Math. 31, 187–212 (1985).

    Google Scholar 

  29. L. Bunce and J. Wright, “Quantum logics and convex geometry,”Comm. Math. Phys. 101, 87–96 (1985).

    Google Scholar 

  30. J. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1968).

    Google Scholar 

  31. J. Jauch and C. Piron, “On the structure of quantal proposition systems,”Helv. Phys. Acta 42, 842–848 (1969).

    Google Scholar 

  32. C. Piron,Foundations of Quantum Mechanics (Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  33. K. Bugajska and S. Bugajski, “On the axioms of quantum mechanics,”Bull. Acad. Pol. Sci., Math., Astron., Phys. 20, 231–234 (1972).

    Google Scholar 

  34. M. Navara, “A note on the axioms of quantum mechanics,”Acta Polytechnica, ČVUT, Prague 15, 5–8 (1988).

    Google Scholar 

  35. G. Rüttimann, “Jauch-Piron states,”J. Math. Phys. 18, 189–193 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulmannová, S. Quantum logics and hilbert space. Found Phys 24, 1403–1414 (1994). https://doi.org/10.1007/BF02283040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02283040

Keywords

Navigation