Skip to main content
Log in

Alternative splicing of dystrophin exon 4 in normal human muscle

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The dystrophin gene is composed of at least 86 exons and the occurrence of several alternative splicing sites, mainly occurring in its 3' region, is a well recognised phenomenon. We have found that exon 4 can also be alternatively spliced in human skeletal and cardiac muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nature Genet 3:283–291

    Google Scholar 

  • Bies RD, Phelps SF, Cortez MD, Roberts R, Caskey CT, Chamberlain JS (1992) Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart and brain development. Nucleic Acids Res 20:1725–1731

    Google Scholar 

  • Bloom T (1995) Brain, as well as brawn? Cuff Biol 5:338–341

    Google Scholar 

  • Chelly J, Gilgenkrantz H, Lambert M, Hamard G, Chafey P, Recan D, Katz P, Chapelle A de la, Koenig M, Ginjaar IB, Fardeau M, Tomé F, Kahan A, Kaplan JC (1990) Effect of dystrophin gene deletions on mRNA levels and processing in Duchenne and Becker muscular dystrophies. Cell 63:1239–1248

    Google Scholar 

  • Chomczynsky P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Dunckley MG, Wells DJ, Walsh FS, Dickson G (1993) Direct retroviral-mediated transfer of a dystrophin mini-gene into mdx mouse muscle in vivo. Hum Mol Genet 2:717–723

    Google Scholar 

  • England SB, Nicholson LV, Johnson MA, Forrest SM, Love DR, Zubrzycka-Gaam EE, Bulman DE, Harris JB, Davies KE (1990) Very mild dystrophy associated with the deletion of 46% of dystrophin. Nature 343:180–182

    Google Scholar 

  • Feener CA, Koenig M, Kunkel LM (1989) Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338:509–511

    Google Scholar 

  • Gangopadhyay SB, Sherrat TG, Heckmatt JZ, Dubowitz V, Miller G, Shokeir M, Ray PN, Strong PN, Worton RG (1992) Dystrophin in frameshift deletion patients with Becker muscular dystrophy. Am J Hum Genet 51:562–570

    Google Scholar 

  • Koenig M, Beggs AH, Moyer M, Schepf S, Heindrichs K, Bettecken T, Meng G, Muller CR, Lindlof M, Kaariainen H, Chapelle A de la, Kiuru A, Savontaus ML, Gilgenkrantz H, Recan D, Chelly J, Kaplan JC, Covone A, Archidiacono N, Romeo G, Liechti-Gallati S, Schneider V, Braga S, Moser H, Darras BT, Murphy P, Francke U, Chen JD, Morgan G, Denton M, Greenberg CR, Wrogemann K, Blonden LAJ, Paassen HMB van, Ommen GJB van, Kunkel LM (1989) The mólecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498–506

    Google Scholar 

  • Levine BA, Moir AJG, Patchell VB, Perry SV (1990) The interaction of actin with dystrophin. FEBS Lett 263:159–162

    Google Scholar 

  • Levine BA, Moir AJG, Patchell VB, Perry SV (1991) Binding sites involved in the interaction of actin with the N-terminal region of dystrophin. FEBS Lett 298:4–18

    Google Scholar 

  • Malhotra SB, Hart KA, Klamut HJ, Thomas NST, Bodrug SE, Burghes AHM, Bobrow M, Harper PS, Thompson Mw, Ray PN, Worton RG (1988) Frameshift deletions in patients with Duchenne and Becker muscular dystrophy. Science 242:755–759

    Google Scholar 

  • Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90–95

    Google Scholar 

  • Muntoni F, Gobbi P, Sewry C, Abbs S, Roberts R, Dubowitz V (1994) Deletions in the 5′ region of dystrophin and resulting phenotypes. J Med Genet 31: 843–847

    Google Scholar 

  • Muntoni F, Melis MA, Ganau A, Dubowitz V (1995) Transcription of the dystrophin gene in normal tissues and in skeletal muscle of a family with X-linked dilated cardiomyopathy. Am J Hum Genet 56:151–157

    Google Scholar 

  • Rafael JA, Sunada Y, Cole NM, Campbell KP, Faulkner JA, Chamberlain JS (1994) Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Hum Mol Genet 3:1725–1733

    Google Scholar 

  • Winnard AV, Klein CJ, Coovert DD, Prior T, Papp A, Snyder P, Bulman DE, Ray PN, McAndrew P, King W, Moxley RT, Mendell JR, Burghes AHM (1993) Characterization of translational frame exception patients in Duchenne/Becker muscular dystrophy. Hum Mol Genet 2:737–744

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torelli, S., Muntoni, F. Alternative splicing of dystrophin exon 4 in normal human muscle. Hum Genet 97, 521–523 (1996). https://doi.org/10.1007/BF02267079

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02267079

Keywords

Navigation