Skip to main content
Log in

Evolutionary consequences of cytoplasmic sex ratio distorters

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Computer simulations of diploid genetic models were used to examine the consequences of the spread of a cytoplasmic sex ratio distorter on the frequencies of nuclear sex-determination alleles and the spread of nuclear resistance alleles in female biased populations. The cytoplsmic elements considered here override the expression of the nuclear sex-determination genes, turning genetic males into females. When homozygous male genotypes are viable, a cytoplasmic sex ratio historter spreads in a population if the proportion of daughters produced by infected females exceeds the proportion of daughters produced by uninfected females. The equilibrium frequency of male phenotypes is the proportion of uninfected progeny produced by infected females. When homozygous male genotypes are lethal, the conditions for the spread of the cytoplasmic element are more stringent. The spread of a cytoplasmic sex ratio distorter causes an increase in the frequency of nuclear male sex-determination alleles as a result of the unusual combinations of genotypes which mate in infected populations. Eventually, a cytoplasmic element may replace the nuclear gene as the sex-determination mechanism. This occurs without selection. Nuclear genes conferring resistance to cytoplasmic sex ratio distorters generally increase in female biased populations and often restore a 1∶1 sex ratio despite continual selection on the cytoplasmic element to increase its transmission efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreadis, T. G. and Hall, D. W. (1979) Significance of transovarial infections ofAmblyospora sp. (Microspora: Thelohaniidae) in relation to parasite maintenance in the mosquitoCulex salinarus.J. Inv. Path. 34, 152–7.

    Google Scholar 

  • Bull, J. J. (1983)Evolution of Sex-Determining Mechanisms. Benjamin/Cummings, Menlo Park, USA.

    Google Scholar 

  • Bulnheim, H-P. (1975) Microsporidian infections of amphipods with special reference to host-parasite relationships: A review.Marine Fisheries Review 37, 39–45.

    Google Scholar 

  • Clarke, C., Sheppard, P. M. and Scali, V. (1975) All-female broods in the butterflyHypolimnas bolina (L.).Proc. R. Soc. Lond. B. 189, 29–37.

    Google Scholar 

  • Cosmides, L. M. and Tooby, J. (1981) Cytoplsmic inheritance and intragenomic conflict.J. Theor. Biol. 89, 83–129.

    PubMed  Google Scholar 

  • Counce, S. J. and Poulson, D. F. (1962) Developmental effects of the sex ratio agent in embryos ofDrosophila willistoni.J. Exp. Zool. 151, 17–31.

    PubMed  Google Scholar 

  • Ebeling, A. W. and Chen, T. R. (1970) Heterogamety in teleostean fishes.Trans. Am. Fish. Soc. 99, 131–8.

    Google Scholar 

  • Fisher, R. A. (1930)The Genetical Theory of Natural Selection. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Franco, M. G., Rubini, P. G. and Vecchi M. (1982). Sex-determinants and their distribution in various populations ofMusca domestica L. of western Europe.Gen. Res. 40, 279–93.

    Google Scholar 

  • Ginsburger-Vogel, T., Carre-Lecuyer, M. C. and Fried-Montaufier, M. C. (1980) Transmission expérimentale de la thélygénie liée a l'intersexualité chezOrchestria gammarellus (Pallas); Analyse des génotypes sexuels dans la descendence des femelles normales transformées en femelles thélygènes.Arch. Zool. Exp. Gen. 122, 261–70.

    Google Scholar 

  • Gorman, G. C. (1973) The chromosomes of the Reptilia: a cytotaxonomic interpretation.Cytotaxonomy and vertebrate Evolution. (A. B. Chiarelli and E. Capanna, eds) pp. 349–424. Academic Press, New York, USA.

    Google Scholar 

  • Grewal, M. S. and Ellis, J. R. (1972) Sex determination inPotentialla fruticosa.Heredity 29, 359–62.

    Google Scholar 

  • Grossman, A. I., Short, R. B. and Cain, G. D. (1981) Karyotype evolution and sex chromosome differentiation in Schistosomes (Trematoda, Schistosomatidae).Chromosoma 84, 413–30.

    PubMed  Google Scholar 

  • Juchault, P. and Legrand, J.-J. (1981) Contribution à l'étufde qualitative et quantitative des facteurs contrôlant le sexe dans les populations du Crustacé Isopode terrestreArmadillidium vulgare Latreille. II. Populations n'hebergeant le facteur féminisant F (Bacteroide intracytoplasmique).Arch. Zool. Exp. Gen. 122, 65–74.

    Google Scholar 

  • Kawamura, T. and Nishioka, M. (1977) Aspects of the reproductive biology of Japanse Anurans.The Reproductive Biology of Amphibians. (D. H. Taylor and S. I. Guttman, eds.), pp 103–9. Plenum Press, New York, USA.

    Google Scholar 

  • Kellen, W. R., Chapman, H. C., Clark, T. B. and Lindgren, J. E. (1965) Host-parasite relationships of someThelohania from mosquitoes (Nosematidae: Microsporidia).J. Invest. Pathol. 7, 161–6.

    Google Scholar 

  • Kezer, J. and Sessions, S. K. (1979) Chromosome variation in the Plethodontid salamander,Aneides ferreus.Chromosoma 71, 65–80.

    Google Scholar 

  • Lloyd, D. G. (1974) Theoretical sex ratios of dioecious and gynodioecious angiosperms.Heredity 32, 11–34.

    Google Scholar 

  • Mengden, G. A. and Stock, A. D. (1980) Chromosomal evolution in serpents; a comparison of G and C chromosome banding patterns of some Colubrid and Boid genera.Chromosoma 79, 53–64.

    Google Scholar 

  • Ohno, S. (1967).Sex Chromosomes and Sex-linked Genes. Monographs on Endocrinology. (A. Labhart, T. Mann, L. T. Samuels, and J. Zander, eds), vol. 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Peccinini-Seale, D. (1981) New developments in vertebrate cytotaxonomy IV. Cytogenetic studies in reptiles.Genetica 56, 123–48.

    Google Scholar 

  • Ray-Chaudhuri, R. (1973) Cytotaxonomy and chromosome evolution in birds.Cytotaxonomy and Vertebrate Evolution. (A. B. Chiarelli and E. Capanna, eds) pp. 425–83. Academic Press, New York, USA.

    Google Scholar 

  • Schmid, M. (1980) Chromosome banding in Amphibia V. Highly differentiated ZW/ZZ sex chromosomes and exceptional genome size inPyxicephalus adspersus (Anura, Ranidae).Chromosoma 80, 69–96.

    Google Scholar 

  • Sessions, S. K. (1982) Cytogenetics of diploid and triploid salamanders of theAmbystoma jeffersonianum complex.Chromosoma 84, 599–621.

    Google Scholar 

  • Sola, L. S., Cataudella, S. and Capanna, E. (1981) New developments in vertebrate cytotaxonomy III. Karyology of bony fishes: a review.Genetica 54, 285–328.

    Google Scholar 

  • Takagi, N. and Sasaki, M. (1974) A phylogenetic study of bird karyotypes.Chromosoma 46, 91–120

    PubMed  Google Scholar 

  • Uyenoyama, M. K. and Feldman, M. W. (1978) The genetics of sex ratio distortion by cytoplasmic infection under maternal and contagious transmission: an epidemiological study.Theorr. Pop. Biol. 14, 471–97.

    Google Scholar 

  • Weiler, C. and Ohno, S. (1962) Cytological confirmation of female heterogamety in the African water frog (Xenopus laevis).Cytogenetics 1, 217–23.

    PubMed  Google Scholar 

  • Werren, J. H. (1987) The coevolution of autosomal and cytoplasmic sex ratio factors.J. Theor. Biol. 124, 317–34.

    Google Scholar 

  • Werren, J. H., Skinner, S. W. and Huger, A. (1986) Male-killing bacteria in a parasitic wasp.Science 231, 990–2.

    PubMed  Google Scholar 

  • Westergaard, M. (1958) The mechanism of sex-determination in dioecious flowerning plants.Adv. Genet. 9, 217–81.

    PubMed  Google Scholar 

  • White, M. J. D. (1973)Animal Cytology and Evolution, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Williamson, D. L. and Poulson, D. F. (1979) Sex ratio organisms (spiroplasms) ofDrosophila. InThe Mycoplasms, vol. 3. (R. F. Whitcomb and J. G. Tully, eds) pp. 175–208. Academic Press, New York.

    Google Scholar 

  • Winge, O. and Ditlevsen, E. (1947) Colour inheritance and sex determination inLebistes.Herdity 1, 65–83.

    Google Scholar 

  • Yamamoto, T. (1975) A YY male goldfish from mating estrogen-induced XY female and normal male.J. Hered. 66, 2–4.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, D.R. Evolutionary consequences of cytoplasmic sex ratio distorters. Evol Ecol 4, 235–248 (1990). https://doi.org/10.1007/BF02214332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214332

Keywords

Navigation