Skip to main content
Log in

Complete convergence and almost sure convergence of weighted sums of random variables

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Letr>1. For eachn≥1, let {X nk , −∞<k<∞} be a sequence of independent real random variables. We provide some very relaxed conditions which will guarantee\(\Sigma _{n \geqslant 1} n^{r - 2} P\{ |\Sigma _{k = - \infty }^\infty X_{nk} | \geqslant \varepsilon \}< \infty \) for every ε>0. This result is used to establish some results on complete convergence for weighted sums of independent random variables. The main idea is that we devise an effetive way of combining a certain maximal inequality of Hoffmann-Jørgensen and rates of convergence in the Weak Law of Large Numbers to establish results on complete convergence of weighted sums of independent random variables. New results as well as simple new proofs of known ones illustrate the usefulness of our method in this context. We show further that this approach can be used in the study of almost sure convergence for weighted sums of independent random variables. Convergence rates in the almost sure convergence of some summability methods ofiid random variables are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen, S. and Kurtz, T.G. (1980). Necessary and sufficient conditions for complete convergence in the Law of large numbers.Ann. Prob. 8, 176–182.

    Google Scholar 

  2. Azalarov, T. A., and Volodin, N. A. (1981). Laws of large numbers for identically distributed Banach-space valued random variables.Theory Prob. Appl. 26, 573–580.

    Google Scholar 

  3. Baum, L. B., and Katz, M.. (1965). Convergence rates in the law of large numbers.Trans. Amer. Math. Soc. 120, 108–123.

    Google Scholar 

  4. Bingham, N. H. (1984a). On Borel and Euler summability.J. Lond. Math. Soc., II. Ser.29, 141–146.

    Google Scholar 

  5. Bingham, N. H. (1984b). Tauberian theorems for summability methods of random-walk type.J. Lond. Math. Soc. 30, 281–287.

    Google Scholar 

  6. Bingham, N. H. (1984c). On Valiron and circle convergence.Math. Z. 186, 273–286.

    Google Scholar 

  7. Bingham, N. H. (1985). On Tauberian theorems in probability theory.Nieuw Arch. Wiskd. IV. Ser.3, 157–166.

    Google Scholar 

  8. Bingham, N. H. (1986). Extensions to the strong law. (Reuter Festschrift) Supplement toAdv. Appl. Prob. pp. 27–36.

  9. Bingham, N. H. (1989). Moving averages. In: Edgar, G. A., Sucheston, L. (eds.), Pro. Conf. on Almost everywhere convergence, pp. 131–144. Academic Press, Boston, Massachusetts.

    Google Scholar 

  10. Bingham, N. H., and Maejima, M. (1985). Summability methods and almost convergence.Z. Wahrsch. verw. Geb. 68, 383–392.

    Google Scholar 

  11. Bingham, N. H., and Tenenbaum, M. (1986). Riesz and Valiron means and fractional moments.Math. Proc. Cam. Philos. Soc. 99, 143–149.

    Google Scholar 

  12. Chow, Y. S. (1966). Some convergence theorems for independent random variables.Ann. Math. Statist. 37, 1482–1493.

    Google Scholar 

  13. Chow, Y. S. (1973). Delayed sums and Borel summability of independent, identically distributed random variables.Bull. Inst. Math., Acad. Sin. 1, 207–220.

    Google Scholar 

  14. Chow, Y. S., and Lai, T. L. (1973). Limiting behavior of weighted sums independent random variables.Ann. Prob. 1, 810–824.

    Google Scholar 

  15. Chow, Y. S., and Teicher, H. (1978).Probability Theory: Independence, Interchangeability, Martingales. Springer_Verlag, New York.

    Google Scholar 

  16. Csörgő, M., and Horváth, L. (1987). Rates of convergence in random walk summation.Bull. London Math. Soc. 19, 531–536.

    Google Scholar 

  17. Davis, J. A. (1968). Convergence rates for the law of the iterated logarithm.Ann. Math. Stat. 39, 1479–1485.

    Google Scholar 

  18. de Acosta, A. (1981). Inequalities of\(\mathbb{B}\)-valued random vectors with applications to the strong law of large numbers.Ann. Prob. 9, 157–161.

    Google Scholar 

  19. Déniel, Y., and Derriennic, Y. (1988). Sur la convergence presque sure, au sens de Cesàro d'ordre α, 0<α<1, de variables aléatoires et indépendantes et identiquement distribuées.Prob. Theory Relat. Fields 79, 629–636.

    Google Scholar 

  20. Erdös, P. (1949). On a theorem of Hsu and Robbins.Ann. Math. Stat. 20, 286–291.

    Google Scholar 

  21. Erdös, P. (1950). A remark on my paper “On a theorem of Hsu and Robbins”.Ann. Math. Stat. 21, 138.

    Google Scholar 

  22. Gut, A. (1978). Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices.Ann. Prob. 6, 469–482.

    Google Scholar 

  23. Gut, A. (1993). Complete convergence and Cesaro summation for i.i.d. random variables.Prob. Theory Rel. Fields 97, 169–178.

    Google Scholar 

  24. Heathcote, C. R. (1967). Complete exponential convergence and some related topics.Methuen's Review Series in Applied Probability Vol. 7, Methuen & Co., London.

    Google Scholar 

  25. Heinkel, B. (1990). An infinite-dimensional law of large numbers in Cesáro's sense.J. Theor. Prob. 3, 533–546.

    Google Scholar 

  26. Heyde, C. C., and Rohatgi, V. K. (1967). A pair of complementary theorems on convergence rates in the law of large numbers.Proc. Camb. Phil. Soc. 63, 73–82.

    Google Scholar 

  27. Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables.Studia Math. 52, 159–186.

    Google Scholar 

  28. Hsu, P. L., and Robbins, H. (1947). Complete convergence and the law of large numbers.Proc. Nat. Acad. Sci. 33, 25–31.

    Google Scholar 

  29. Jain, N. C. (1975). Tail probabilities for sums of independent Banach space valued random variables.Z. Wahrsch. verw. Geb. 33, 155–166.

    Google Scholar 

  30. Katz, M. (1963). The probability in the tail of a distribution.Ann. Math. Stat. 34, 312–318.

    Google Scholar 

  31. Kurtz, T. G. (1972). Inequalities for the law of large numbers.Ann. Math. Stat. 43, 1874–1883.

    Google Scholar 

  32. Lai, T. L. (1974). Limit theorems for delayed sums.Ann. Prob. 2, 432–440.

    Google Scholar 

  33. Lai, T. L. (1976). Onr-quick convergence and a conjecture of Strassen.Ann. Prob. 4, 612–627.

    Google Scholar 

  34. Li, D. (1991a). Convergence rates of the law of the iterated logarithm forB-valued random variables.Science in China,34 A, 395–404.

    Google Scholar 

  35. Li, D. (1991b). Convergence rates of the strong law of large numbers for fields ofB-valued random variables.Chinese Ann. Math. 11(A), 744–752.

    Google Scholar 

  36. Li, D., Rao, M. B., Jiang, T., and Wang, X. C. (1990). Complete convergence and almost sure convergence of weighted sums of random variables. Research Report No. 90-44, Center for Multivariate Analysis, Pennsylvania State University, University Park, Pennsylvania 16802.

    Google Scholar 

  37. Li, D., Rao, M. B., and Wang, X. C. (1992a). The law of the iterated logarithm for independent random variables with multidimensional indices.Ann. Prob. 20, 660–674.

    Google Scholar 

  38. Li, D., Wang, X. C., and Rao, M. B. (1992b). Some results on convergence rates for probabilities of moderate deviations for sums of random variables.Internal. J. Math. and Math. Sci. 15, 481–498.

    Google Scholar 

  39. Lorentz, G. G. (1955). Borel and Banach properties of methods of summation.Duke Math. J. 22, 129–141.

    Google Scholar 

  40. Peligrad, M. (1985). Convergence rates of the strong law for stationary processes.Z. Wahrsch. verw. Geb. 70, 307–314.

    Google Scholar 

  41. Petrov, V. V. (1975).Sums of Independent Random Variables. Springer-Verlag, New York.

    Google Scholar 

  42. Spitzer, F. L. (1956). A combinatiorial lemma and its applications.Trans. Amer. Math. Soc. 82, 323–339.

    Google Scholar 

  43. Stout, W. F. (1974).Almost Sure Convergence. Academic Press, New York.

    Google Scholar 

  44. Taylor, R. L. (1978). Stochastic convergence of weighted sums of random elements in linear spaces.Lecture Notes in Math., Vol. 672. Springer-Verlag, New York.

    Google Scholar 

  45. Teicher, H. (1985). Almost certain convergence in double arrays.Z. Wahrsch. verw. Geb. 69, 331–345.

    Google Scholar 

  46. Thrum, R. (1987). A remark on almost sure convergence of weighted sums.Prob. Theory Rel. Fields 75, 425–430.

    Google Scholar 

  47. von Bahr, B., and Esseen, C. G. (1965). Inequalities for ther th absolute moment of a sum of random variables, 1≤r≤2.Ann. Math. Stat. 36, 299–303.

    Google Scholar 

  48. Wang, X. C., Rao, M. B., and Yang, X. Y. (1993). Convergence rates on strong laws of large numbers for arrays of rowwise independent elements.Stoch. Anal. Appl. 11, 115–132.

    Google Scholar 

  49. Woyczynski, W. A. (1980). Tail probabilities of sums of random vectors in Banach spaces and related mixed norms.Lecture Notes in Math. Springer-Verlag, New York,794, 455–469.

    Google Scholar 

  50. Wu, Z. Q., Wang, X. C., and Li, D. (1987). Some general results of the law of large numbers.Northeastern Math. J. 3, 228–238.

    Google Scholar 

  51. Yang, X. Y., and Wang, X. C. (1986). Tail probabilities for sums of independent and identically distributed Banach space valued random elements.Northeastern Math. J. 2, 327–338.

    Google Scholar 

  52. Yu, K. F. (1990). Complete convergence of weighted sums of martingale difference.J. Theoretical Prob. 3, 379–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Bhaskara Rao, M., Jiang, T. et al. Complete convergence and almost sure convergence of weighted sums of random variables. J Theor Probab 8, 49–76 (1995). https://doi.org/10.1007/BF02213454

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02213454

Key Words

Navigation