Skip to main content
Log in

Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The complete 12S rRNA gene of 32 carnivore species, including four feliforms and 28 caniforms, was sequenced. The sequences were aligned on the basis of their secondary structures and used in phylogenetic analyses that addressed several evolutionary relationships within the Caniformia. The analyses showed an unresolved polytomy of the basic caniform clades; pinnipeds, mustelids, procyonids, skunks,Ailurus (lesser panda), ursids, and canids. The polytomy indicates a major diversification of caniforms during a relatively short period of time. The lesser panda was distinct from other caniforms, suggesting its inclusion in a monotypic family, Ailuridae. The giant panda and the bears were joined on the same branch. The skunks are traditionally included in the family Mustelidae. The present analysis, however, showed a less close molecular relationship between the skunks and the remaining Mustelidae (sensu stricto) than between Mustelidae (sensu stricto) and Procyonidae, making Mustelidae (sensu lato) paraphyletic. The results suggest that the skunks should be included in a separate family, Mephitidae. Within the Pinnipedia, the grouping of walrus, sea lions, and fur seals was strongly supported. Analyses of a combined set of 12S rRNA and cytochromeb data were generally consistent with the findings based on each gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allard MW, Honeycutt RL (1992) Nucleotide sequence variation in the mitochondrial 12S rRNA gene and the phylogeny of African mole-rats (Rodentia: Bathyergidae). Mol Biol Evol 9:27–40

    Google Scholar 

  • Allard MW, Miyamoto MM, Jarecki L, Kraus F, Tennant MR (1992) DNA systematics and evolution of the artiodactyl family Bovidae. Proc Natl Acad Sci 89:3972–3976

    Google Scholar 

  • Arnason U, Gullberg A (1996) Sequence analyses of the mitochondrial cytochrome b gene identify five primary evolutionary lineages of extant cetaceans. Mol Biol Evol 13:407–417

    Google Scholar 

  • Arnason U, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina. J Mol Evol 34:493–505

    Google Scholar 

  • Arnason U, Ledje C (1993) The use of highly repetitive DNA for resolving cetacean and pinniped phylogenies. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny, Placentals, vol 2. Springer-Verlag, New York, pp 74–80

    Google Scholar 

  • Arnason U, Widegren B (1986) Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA. Mol Biol Evol 3:356–365

    Google Scholar 

  • Arnason U, Gretardsdottir S, Gullberg A (1993a) Comparisons between the 12S rRNA, 16S rRNA, NADH1 and COI genes of sperm and fin whale mitochondrial DNA. Biochem Syst Ecol 21:115–122

    Google Scholar 

  • Arnason U, Gullberg A, Johnsson E, Ledje C (1993b) The nucleotide sequence of the mitochondrial DNA molecule of the grey seal, Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol 37:323–330

    Google Scholar 

  • Arnason U, Bodin K, Gullberg A, Ledje C, Mouchaty S (1995) A molecular view of pinniped relationships with particular emphasis on the true seals. J Mol Evol 40:78–85

    Google Scholar 

  • Barnes LG (1979) Fossil enaliarctine pinnipeds (Mammalia: Otariidae) from Pyramid Hill, Kern county, California. Contrib Sci Nat History Mus LA 318:1–41

    Google Scholar 

  • Berta A, Ray CE, Wyss AR (1989) Skeleton of the oldest known pinniped Enaliarctos mealsi. Science 244:60–62

    Google Scholar 

  • Bryant HN, Russell Fls AP, Fitch WD (1993) Phylogenetic relationships within the extant Mustelidae (Carnivora): appraisal of the cladistic status of the Simpsonian subfamilies. Zool J Linnean Soc 108:301–334

    Google Scholar 

  • Cao Y, Adachi J, Janke A, Pääbo S, Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J Mol Evol 39:519–527

    Google Scholar 

  • Cummings MP, Otto SP, Wakeley J (1995) Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 12:814–822

    Google Scholar 

  • Czelusniak J, Goodman M, Koop BF, Tagle DA, Shoshani J, Braunitzer G, Kleinschmidt TK, de Jong WW, Matsuda G (1990) Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In: Genoways HH (ed) Current mammalogy, vol 2. Plenum, pp 545–572

  • de Jong WW, Leunissen JAM, Wistow GJ (1993) Eye lens crystallins and the phylogeny of placental orders: evidence for a macroscelidpaenungulate clade? In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny, placentals, vol 2. Springer-Verlag, New York, pp 5–12

    Google Scholar 

  • Douzery E (1993) Evolutionary relationships among Cetacea based on the sequence of the mitochondrial 12S rRNA gene: possible paraphyly of toothed-whales (Odontocetes) and long separate evolution of sperm whales (Physeteridae). CR Acad Sci Paris Sci vie 316:1511–1518

    Google Scholar 

  • Douzery E, Catzeflis FM (1995) Molecular evolution of the mitochondrial 12S rRNA in Ungulata (Mammalia). J Mol Evol 41:622–636

    Google Scholar 

  • Felsenstein J (1993) PHYLIP, 3.5c edn, Department of Genetics SK-50, University of Washington, Seattle

    Google Scholar 

  • Flynn JJ, Neff NA, Tedford RH (1988) Phylogeny of the Carnivora. In: Benton MJ (ed) The phylogeny and classification of the tetrapods, Mammals, vol 2. Clarendon Press, Oxford, pp 73–115

    Google Scholar 

  • Gatesy J, Yelon D, DeSalle R, Vrba ES (1992) Phylogeny of the Bovidae (Artiodactyla, Mammalia) based on mitochondrial ribosomal DNA sequences. Mol Biol Evol 9:433–446

    Google Scholar 

  • Gutell RR (1994) Collection of small subunit (16S and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res 22:3502–3507

    Google Scholar 

  • Gutell RR, Woese CR (1990) Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs. Proc Natl Acad Sci 87:663–667

    Google Scholar 

  • Gutell RR, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–215

    Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving ribosomal RNA: 16S and 23S rRNA structure from a comparative perspective. Microbiol Rev 58:10–26

    Google Scholar 

  • Hänni C, Laudet V, Barriel V, Catzeflis FM (1995) Evolutionary relationships of Acomys and other murids (rodentia, mammalia) based on complete 12S rRNA mitochondrial gene sequences. Israel J Zool 41:131–146

    Google Scholar 

  • Hickson RE, Simon C, Cooper A, Spicer GS, Sullivan J, Penny D (1996) Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. Mol Biol Evol 13:150–169

    Google Scholar 

  • Hixon JE, Brown WM (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol 3:1–18

    Google Scholar 

  • Janczewski DN, Modi WS, Stephens JC, O'Brien SJ (1995) Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the pantherine lineage of Felidae. Mol Biol Evol 12:690–707

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Google Scholar 

  • Kjer KM (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol Phylogenet Evol 4:314–330

    Google Scholar 

  • Kraus F, Miyamoto MM (1991) Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial DNA sequences. Syst Zool 40:117–130

    Google Scholar 

  • Krettek A, Gullberg A, Arnason U (1995) Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceus europaeus, and the phylogenetic position of the Erinaceidae. J Mol Evol 41:952–957

    Google Scholar 

  • Ledje C, Arnason U (1996) Phylogenetic analyses of complete cytochrome b genes of the order Carnivora with particular emphasis on the Caniformia. J Mol Evol 42:135–144

    Google Scholar 

  • Lento GM, Hickson RE, Chambers GK, Penny D (1995) Use of spectral analysis to test hypotheses on the origin of pinniped. Mol Biol Evol 12:28–52

    Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade, analysis of phylogeny and character evolution, 3.02 edn. Sinauer, Sunderland, MA, pp 398

    Google Scholar 

  • Miyamoto MM, Boyle SM (1989) The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Excerpta Medica, Amsterdam, pp 437–450

    Google Scholar 

  • Miyamoto MM, Kraus F, Ryder OA (1990) Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc Natl Acad Sci 87:6127–6131

    Google Scholar 

  • Neefs J-M, Van de Peer Y, De Rijk P, Chapelle S, De Wachter R (1993) Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21:3025–3049

    Google Scholar 

  • O'Brien SJ, Nash WG, Wildt DE, Bush ME, Benveniste RE (1985) A molecular solution to the riddle of the giant panda's phylogeny. Nature 317:140–144

    Google Scholar 

  • Repenning CA, Tedford RH (1977) Otarioid seals of the Neogene. US Government Printing Office, Washington, DC

    Google Scholar 

  • Repenning CA, Ray CE, Grigorescu D (1979) Pinniped biogeography. In: Gray J, Boucot AJ (eds) Historical biogeography, plate tectonics, and the changing environment. Oregon State University Press, Corvallis, pp 357–369

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sarich VM (1969) Pinniped origins and the rate of evolution of carnivore albumins. Syst Zool 18:186–295

    Google Scholar 

  • Sarich VM (1973) The giant panda is a bear. Nature 245:218–220

    Google Scholar 

  • Slattery JP, O'Brien SJ (1995) Molecular phylogeny of the red panda (Ailurus fulgens). J Heredity 86:413–422

    Google Scholar 

  • Sourrouille P, Hänni C, Ruedi M, Catzeflis FM (1995) Molecular systematics of Mus crociduroides, an endemic mouse of Sumatra (Muridae: Rodentia). Mammalia 59:91–102

    Google Scholar 

  • Springer MS, Hollar LJ, Burk A (1995) Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol Biol Evol 12:1138–1150

    Google Scholar 

  • Swofford DL (1993) PAUP, phylogenetic analysis using parsimony, 3.1.1 edn, Computer program distributed by the Illinois Natural History Survey, Champaign, IL

    Google Scholar 

  • Tedford RH (1976) Relationship of pinnipeds to other carnivores (Mammalia). Syst Zool 25:363–374

    Google Scholar 

  • Van der Peer Y, Van den Broeck I, De Rijk P, De Wachter R (1994) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494

    Google Scholar 

  • Vrana PB, Milinkovitch MC, Powell JR, Wheeler WC (1994) Higher level relationships of the arctoid carnivora based on seuqnece data and “total evidence”. Mol Phylogenet Evol 3:47–58

    Google Scholar 

  • Wayne RK (1993) Molecular evolution of the dog family. Trends Genet 9:218–224

    Google Scholar 

  • Wayne RK, Benveniste RE, Janczewski DN, O'Brien SJ (1989) Molecular and biochemical evolution of the Carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Cornell University Press, Ithaca, NY, pp 465–494

    Google Scholar 

  • Wilson DE, Reeder DM (eds) (1993) Mammal species of the world. A taxonomic and geographic reference. Smithsonian Institution Press, Washington, 1207 pp

    Google Scholar 

  • Wozencraft WC (1989) The phylogeny of the recent carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Chapman and Hall, London, pp 495–535

    Google Scholar 

  • Wyss AR (1987) The walrus auditory region and the monophyly of pinnipeds. Am Mus Novit 2871:1–13

    Google Scholar 

  • Wyss AR (1988) Evidence from flipper structure for a single origin of pinnipeds. Nature 334:427–428

    Google Scholar 

  • Wyss AR, Flynn JJ (1993) A phylogenetic analysis and definition of the Carnivora. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny, placentals, vol 2. Springer-Verlag, New York, pp 32–52

    Google Scholar 

  • Xu X, Arnason U (1994) The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene 148:357–362

    Google Scholar 

  • Xu X, Arnason U (1996) The complete mitochondrial DNA sequence of the white rhinoceros,Ceratotherium simum, and comparison with the mtDNA of Indian rhinoceros,Rhinoceros unicornis. Mol Phyl Evol (in press)

  • Xu X, Janke A, Arnason U (1996) The complete mitochondrial DNA sequence of the greater Indian rhinoceros,Rhinoceros unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla and Artiodactyla (+Cetacea). Mol Biol Evol (in press)

  • Zhang Y-P, Ryder OA (1993) Mitochondrial DNA sequence evolution in the Arctoidea. Proc Natl Acad Sci 90:9557–9561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledje, C., Arnason, U. Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene. J Mol Evol 43, 641–649 (1996). https://doi.org/10.1007/BF02202112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02202112

Key words

Navigation