Skip to main content
Log in

Nonholonomic mechanical systems with symmetry

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This work develops the geometry and dynamics of mechanical systems with nonholonomic constraints and symmetry from the perspective of Lagrangian mechanics and with a view to control-theoretical applications. The basic methodology is that of geometric mechanics applied to the Lagrange-d'Alembert formulation, generalizing the use of connections and momentum maps associated with a given symmetry group to this case. We begin by formulating the mechanics of nonholonomic systems using an Ehresmann connection to model the constraints, and show how the curvature of this connection enters into Lagrange's equations. Unlike the situation with standard configuration-space constraints, the presence of symmetries in the nonholonomic case may or may not lead to conservation laws. However, the momentum map determined by the symmetry group still satisfies a useful differential equation that decouples from the group variables. This momentum equation, which plays an important role in control problems, involves parallel transport operators and is computed explicitly in coordinates. An alternative description using a “body reference frame” relates part of the momentum equation to the components of the Euler-Poincaré equations along those symmetry directions consistent with the constraints. One of the purposes of this paper is to derive this evolution equation for the momentum and to distinguish geometrically and mechanically the cases where it is conserved and those where it is not. An example of the former is a ball or vertical disk rolling on a flat plane and an example of the latter is the snakeboard, a modified version of the skateboard which uses momentum coupling for locomotion generation. We construct a synthesis of the mechanical connection and the Ehresmann connection defining the constraints, obtaining an important new object we call the nonholonomic connection. When the nonholonomic connection is a principal connection for the given symmetry group, we show how to perform Lagrangian reduction in the presence of nonholonomic constraints, generalizing previous results which only held in special cases. Several detailed examples are given to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R. &J. E. Marsden [1978]Foundations of Mechanics. Second Edition, Addison-Wesley.

  • Abraham, R., J. E. Marsden &T. S. Ratiu [1988]Manifolds, Tensor Analysis, and Applications. Second Edition, Springer-Verlag.

  • Sánchez de Alvarez, G. [1989] Controllability of Poisson control systems with symmetry.Contemp. Math. Amer. Math. Soc. 97, 399–412.

    Google Scholar 

  • Arnold, V. [1988]Dynamical Systems III. Springer-Verlag.

  • Arnold, V. I. [1989]Mathematical Methods of Classical Mechanics. Second Edition, Springer-Verlag.

  • Bates, L. &J. Sniatycki [1993] Nonholonomic reduction.Reports on Math. Phys. 32, 99–115.

    Google Scholar 

  • Bloch, A. M. &P. E. Crouch [1992] On the dynamics and control of nonholonomic systems on Riemannian Manifolds.Proceedings of NOLCOS '92, Bordeaux, 368–372.

  • Bloch, A. M. &P. E. Crouch [1994] Nonholonomic control systems on Riemannian manifolds.SIAM J. Control Optim. 33, no. 1, 126–148

    Google Scholar 

  • Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden &T. S. Ratiu [1994] Dissipation Induced Instabilities.Ann. Inst. H. Poincaré, Analyse Nonlinéaire.11, 37–90.

    Google Scholar 

  • Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden &T. S. Ratiu [1996] The Euler-Poincaré equations and double bracket dissipation,Comm. Math. Phys. 175, 1–42.

    Google Scholar 

  • Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden &G. Sánchez de Alvarez [1992] Stabilization of rigid body dynamics by internal and external torques.Automatica.28, 745–756.

    Google Scholar 

  • Bloch, A. M., J.E. Marsden, &G. Sánchez de Alvarez [1996] Feedback stabilization of relative equilibria for mechanical systems with symmetry.Preprint, California Institute of Technology.

  • Bloch, A. M., M. Reyhanoglu &H. McClamroch [1992] Control and stabilization of nonholonomic systems.IEEE Trans. Automat. Control. 37, 1746–1757.

    Google Scholar 

  • Bondi, H. [1986] The rigid-body dynamics of unidirectional spin.Proc. Roy. Soc. Lond. 405, 265–274.

    Google Scholar 

  • Brockett, R. W. &L. Dai [1992] Nonholonomic kinematics and the role of elliptic functions in constructive controllability, inNonholonomic Motion Planning,Z. Li &J. F. Canny, Kluwer, 1–22, 1993.

  • Bryant, R. &P. Griffiths [1983] Reduction for constrained variational problems and ∝ κ2/2ds.Amer. J. Math. 108, 525–570.

    Google Scholar 

  • Burdick, J., B. Goodwine &J. Ostrowski [1994] The rattleback revisited. Preprint, California Institute of Technology.

  • Cardin, F. &M. Favretti [1996] On Chetaev and vakonomic dynamics of nonholonomic mechanical systems.J. Geom. and Phys. 18, 295–325.

    Google Scholar 

  • Cartan, E. [1928] Sur la représentation géométrique des systèmes matèriels non holonomes.Atti. Cong. Int. Matem. 4, 253–261.

    Google Scholar 

  • Chaplygin, S. A. [1897a] On the motion of a heavy body of revolution on a horizontal plane (in Russian).Physics Section of the Imperial Society of Friends of Physics, Anthropology and Ethnographics, Moscow9, 10–16. (Reproduced inChaplygin [1954, 413–425].)

    Google Scholar 

  • Chaplygin, S. A. [1897b] On some feasible generalization of the theorem of area, with an application to the problem of rolling spheres (in Russian).Mat. Sbornik 20, 1–32. (Reproduced inChaplygin [1954, 434–454].)

    Google Scholar 

  • Chaplygin, S. A. [1903] On a rolling sphere on a horizontal plane (in Russian).Mat. Sbornik 24, 139–168. (Reproduced inChaplygin [1949, 72–99] andChaplygin [1954, 455–471].)

    Google Scholar 

  • Chaplygin, S. A. [1911] On the theory of the motion of nonholonomic systems. Theorem on the reducing factor (in Russian).Mat. Sbornik 28, 303–314. (Reproduced inChaplygin [1949, 28–38] andChaplygin [1954, 426–433].)

    Google Scholar 

  • Chaplygin, S. A. [1949]Analysis of the Dynamics of Nonholonomic Systems (in Russian). Classical Natural Sciences, Moscow.

    Google Scholar 

  • Chaplygin, S. A. [1954]Selected Works on Mechanics and Mathematics (in Russian). State Publ. House, Technical-Theoretical Literature, Moscow.

    Google Scholar 

  • Crabtree, H. [1909]Spinning Tops and Gyroscopic Motion. Chelsea.

  • Cushman, R., J. Hermans, &D. Kemppainen [1995] The rolling disc. InNonlinear Dynamical Systems and Chaos (Groningen, 1995), Progr. Nonlinear Differential Equations Appl.,19, Birkhäuser, Basel, 21–60.

    Google Scholar 

  • Cushman, R., D. Kemppainen, J. Śniatycki &L. Bates [1995] Geometry of nonholonomic constraints.Rep. Math. Phys. 36, 275–286.

    Google Scholar 

  • Enos, M. J. (ed.) [1993]Dynamics and Control of Mechanical Systems, Fields Inst. Commun., Amer. Math. Soc.1.

  • Getz, N. H. [1993] Control of nonholonomic systems with dynamically decoupled actuators.Proc. 32nd IEEE Control & Decision Conf., San Antonio, December 1993.

  • Getz, N. H. [1994] Control of balance for a nonlinear nonholonomic non-minimum phase model of a bicycle.Proc. Amer. Control Conf., Baltimore, June, 1994.

  • Getz, N. H. &J. E. Marsden [1994 Symmetry and dynamics of the rolling disk. Preprint, 630, Center for Pure and Applied Mathematics, Univ. California, Berkeley.

  • Getz, N. H. &J. E. Marsden [1995] Control for an autonomous bicycle.IEEE Intern. Conf. on Robotics and Automation, Nagoya, Japan, May, 1995

  • Hermans, J. [1995] A symmetric sphere rolling on a surface,Nonlinearity 8, 1–23.

    Google Scholar 

  • Hermans, J. [1995]Rolling Rigid Bodies, with and without Symmetries, Ph.D. Thesis, University of Utrecht.

  • Hamel, G. [1904] Die Lagrange-Eulerschen Gleichungen der Mechanik.Z. f. Math. u. Phys. 50, 1–57.

    Google Scholar 

  • Jalnapurkar, S. [1995] The role of forces in nonholonomic systems, Preprint, Univ. California, Berkeley.

    Google Scholar 

  • Jurdjevic, V. [1993] The geometry of the plate-ball problem.Arch. Rational Mech. Anal. 124, 305–328.

    Google Scholar 

  • Karapetyan, A. V. [1994] On the specific character of the application of Routh's theory to systems with differential constraints.J. Appl. Math. Mech. 58, 387–392. (See alsoJ. Appl. Math. Mech. 51 (1987), 431–436.)

    Google Scholar 

  • Karapetyan, A. V. &V. V. Rumyantsev [1990] Stability of conservative and dissipative systems, inApplied Mechanics: Soviet Reviews 1, G.K. Mikhailov and V.Z. Parton (eds.), Hemisphere NY.

  • Kelly, S. D. &R. M. Murray [1995] Geometric phases and robotic locomotion.J. Robotic Systems 12, no. 6, 417–431

    Google Scholar 

  • Kobayashi, S. &K. Nomizu [1963]Foundations of Differential Geometry. Wiley

  • Koiller, J. [1992] Reduction of some classical nonholonomic systems with symmetry.Arch. Rational Mech. Anal. 118, 113–148.

    Google Scholar 

  • Koon, W-S. &J.E. Marsden [1996a] Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction.SIAM J. Control and Optim. (to appear).

  • Koon, W-S. &J.E. Marsden [1996b] The Hamiltonian and Lagrangian Approaches to the Dynamics of Nonholonomic Systems.Preprint, California Institute of Technology.

  • Kozlov, V.V. &N.N. Kolesnikov [1978] On theorems of dynamics.Prikl. Mat. Mekh. 42, 28–33.

    Google Scholar 

  • Krishnaprasad, P.S. [1989] Eulerian many-body problems.Contemp. Math. Amer. Math. Soc. 97, 187–208.

    Google Scholar 

  • Krishnaprasad, P. S. [1990] Geometric phases and optimal reconfiguration for multibody systems.Proc. Amer. Control Conf., 2440–2444.

  • Krishnaprasad, P. S., W. Dayawansa &R. Yang [1992] The geometry of nonholonomic constraints. Preprint, University of Maryland.

  • Lam, S. H. [1994] Lagrangian dynamics and its control formulation. Preprint, MAE 1993, Mechanical Engineering, Princeton University.

  • Lewis, A. &R. M. Murray [1994] Variational principles in constrained systems: theory and experiments,Intern. J. Nonlinear Mech. 30, 793–815.

    Google Scholar 

  • Lewis, A., J. P. Ostrowski, R. M. Murray &J. Burdick [1994] Nonholonomic mechanics and locomotion: the snakeboard example.IEEE Intern. Conf. on Robotics and Automation.

  • Marle, C.-M. [1995] Reduction of constrained mechanical systems and stability of relative equilibria.Comm. Math. Phys. 174, 295–318.

    Google Scholar 

  • Marsden, J. E., P. S. Krishnaprasad &J. C. Simo (eds.) [1989]Dynamics and Control of Multibody Systems. Contemp. Math., Amer. Math. Soc.97.

  • Marsden, J. E. [1992]Lectures on Mechanics. Cambridge University Press.

  • Marsden, J. E., R. Montgomery &T. S. Ratiu [1990]Reduction, Symmetry, and Phases in Mechanics. Mem. Amer. Math. Soc.436.

  • Marsden, J. E., G. W. Patrick &W. F. Shadwick, (eds.) [1996]Integration Algorithms and Classical Mechanics. Fields Inst. Commun.,10, Am. Math. Soc.

  • Marsden, J. E. &T. S. Ratiu [1994]An Introduction to Mechanics and Symmetry. Springer-Verlag.

  • Marsden, J. E. &T. S. Ratiu [1986] Reduction of Poisson Manifolds.Lett. Math. Phys. 11, 161–170.

    Google Scholar 

  • Marsden, J. E. &J. Scheurle [1993a] Lagrangian reduction and the double spherical pendulum.Z. Agnew. Math. Phys. 44, 17–43.

    Google Scholar 

  • Marsden, J. E. &J. Scheurle [1993b] The reduced Euler-Lagrange equations,Fields Inst. Commun., Amer. Math. Soc.1, 139–164.

    Google Scholar 

  • Murray, R. M., Z. Li &S. S. Sastry [1994]A Mathematical Introduction to Robotic Manipulation. CRC Press.

  • Murray, R. M. &S. S. Sastry [1993] Nonholonomic motion planning: steering using sinusoids.IEEE Trans. Automat. Control 38, 700–716.

    Google Scholar 

  • Neimark, Ju. I. &N. A. Fufaev [1966] On stability of stationary motions of holonomic and nonholonomic systems.J. Appl. Math. (Prikl. Math. Mekh.) 30, 293–300.

    Google Scholar 

  • Neimark, Ju. I. &N. A. Fufaev [1972]Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, Amer. Math. Soc.,33.

  • O'Reilly, O. M. [1996] The dynamics of rolling disks and sliding disks.Nonlinear Dynamics,10, 287–305.

    Google Scholar 

  • Ostrowski, J. [1995]Geometric Perspectives on the Mechanics and Control of Undulatory Locomotion. Ph.D. Thesis, California Institute of Technology.

  • Ostrowski, J., J. W. Burdick, A. D. Lewis &R. M. Murray [1995] The mechanics of undulatory locomotion: The mixed kinematic and dynamic case.IEEE Intern. Conf. on Robotics and Automation 1945–1951.

  • Poincaré, H. [1901 Sur une forme nouvelle des equations de la mecanique.C. R. Acad. Sci. 132, 369–371.

    Google Scholar 

  • Rosenberg, R. M. [1977]Analytical Dynamics of Discrete Systems. Plenum Press, NY.

    Google Scholar 

  • Routh, E. J. [1860]Treatise on the Dynamics of a System of Rigid Bodies. MacMillan, London.

    Google Scholar 

  • San Martin, L. &P. E. Crouch [1984] Controllability on principal fibre bundles with compact structure group.Systems Control Lett. 8, 35–40.

    Google Scholar 

  • Sarlett, W., F. Cantrijn andDJ J. Suanders [1995] A geometrical framework for the study of non-holonomic Lagrangian systems.J. Phys. A: Math. Gen. 28, 3253–3268.

    Google Scholar 

  • Simo, J. C., D. Lewis &J. E. Marsden [1991] Stability of relative equilibria I: The reduced energy momentum method.Arch. Rational Mech. Anal. 115, 15–59.

    Google Scholar 

  • Sumbatov, A. S. [1992] Developments of some of Lagrange's ideas in the works of Russian and Soviet mechanicians.La mécanique analytique de Lagrange et son héritage, Atti della Accademia delle Scienze di Torino, Suppl.2, 126, 169–200.

    Google Scholar 

  • Tsikiris, D. P. [1995]Motion control and planning for nonholonomic kinematic chains. Ph.D. Thesis, Systems Research Institute, University of Maryland.

  • van der Schaft, A. J. &P. E. Crouch [1987] Hamiltonian and self-adjoint control systems.Systems Control Lett. 8, 289–295.

    Google Scholar 

  • van der Schaft, A. J. &B. M. Maschke [1994] On the Hamiltonian formulation of nonholonomic mechanical systems.Rep. Math. Phys. 34, 225–233.

    Google Scholar 

  • Vershik, A. M. &L. D. Faddeev [1981] Lagrangian mechanics in invariant form.Sel. Math. Sov. 1, 339–350.

    Google Scholar 

  • Vershik, A. M. &V. Ya. Gershkovich [1994] Nonholonomic dynamical systems, geometry of distributions and variational problems.Dynamical Systems VII,V. Arnold &S. P. Novikov, eds., 1–81. Springer-Verlag.

  • Vierkandt, A. [1892] Über gleitende und rollende Bewegung.Monats. der Math. u. Phys. 3, 31–54.

    Google Scholar 

  • Walker, G. T. [1896] On a dynamical top.Quart. J. Pure Appl. Math. 28, 175–184.

    Google Scholar 

  • Wang, L. S. &P. S. Krishnaprasad [1992] Gyroscopic control and stabilization.J. Nonlin. Sci. 2, 367–415.

    Google Scholar 

  • Weber, R. W. [1986] Hamiltonian systems with constraints and their meaning in mechanics.Arch. Rational Mech. Anal. 91, 309–335.

    Google Scholar 

  • Whittaker, E. T. [1937]A Treatise on the Analytical Dynamics of Particles and Rigid Bodies Fourth Edition, Cambridge University Press.

  • Yang, R. [1992]Nonholonomic Geometry, Mechanics and Control. Ph.D. Thesis, Systems Research Institute, Univ. of Maryland.

  • Yang, R., P. S. Krishnaprasad &W. Dayawansa [1993] Chaplygin dynamics and Lagrangian reduction.Proc. 2nd Intern. Cong. on Nonlinear Mechanics,W-Z. Chien, Z. H. Guo &Y. Z. Guo, eds., Peking University Press, 745–749.

  • Zenkov, D. V. [1995] The Geometry of the Routh Problem,J. Nonlin. Sci. 5, 503–519.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated byP. Holmes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E. et al. Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136, 21–99 (1996). https://doi.org/10.1007/BF02199365

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02199365

Keywords

Navigation