Abraham, R. &J. E. Marsden [1978]*Foundations of Mechanics*. Second Edition, Addison-Wesley.

Abraham, R., J. E. Marsden &T. S. Ratiu [1988]*Manifolds, Tensor Analysis, and Applications*. Second Edition, Springer-Verlag.

Sánchez de Alvarez, G. [1989] Controllability of Poisson control systems with symmetry.*Contemp. Math. Amer. Math. Soc.*
**97**, 399–412.

Arnold, V. [1988]*Dynamical Systems III*. Springer-Verlag.

Arnold, V. I. [1989]*Mathematical Methods of Classical Mechanics*. Second Edition, Springer-Verlag.

Bates, L. &J. Sniatycki [1993] Nonholonomic reduction.*Reports on Math. Phys.*
**32**, 99–115.

Bloch, A. M. &P. E. Crouch [1992] On the dynamics and control of nonholonomic systems on Riemannian Manifolds.*Proceedings of NOLCOS '92*, Bordeaux, 368–372.

Bloch, A. M. &P. E. Crouch [1994] Nonholonomic control systems on Riemannian manifolds.*SIAM J. Control Optim.*
**33**, no. 1, 126–148

Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden &T. S. Ratiu [1994] Dissipation Induced Instabilities.*Ann. Inst. H. Poincaré, Analyse Nonlinéaire*.**11**, 37–90.

Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden &T. S. Ratiu [1996] The Euler-Poincaré equations and double bracket dissipation,*Comm. Math. Phys.*
**175**, 1–42.

Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden &G. Sánchez de Alvarez [1992] Stabilization of rigid body dynamics by internal and external torques.*Automatica*.**28**, 745–756.

Bloch, A. M., J.E. Marsden, &G. Sánchez de Alvarez [1996] Feedback stabilization of relative equilibria for mechanical systems with symmetry.*Preprint*, California Institute of Technology.

Bloch, A. M., M. Reyhanoglu &H. McClamroch [1992] Control and stabilization of nonholonomic systems.*IEEE Trans. Automat. Control.*
**37**, 1746–1757.

Bondi, H. [1986] The rigid-body dynamics of unidirectional spin.*Proc. Roy. Soc. Lond.*
**405**, 265–274.

Brockett, R. W. &L. Dai [1992] Nonholonomic kinematics and the role of elliptic functions in constructive controllability, in*Nonholonomic Motion Planning*,Z. Li &J. F. Canny, Kluwer, 1–22, 1993.

Bryant, R. &P. Griffiths [1983] Reduction for constrained variational problems and ∝ κ^{2}/2*ds*.*Amer. J. Math.*
**108**, 525–570.

Burdick, J., B. Goodwine &J. Ostrowski [1994] The rattleback revisited. Preprint, California Institute of Technology.

Cardin, F. &M. Favretti [1996] On Chetaev and vakonomic dynamics of nonholonomic mechanical systems.*J. Geom. and Phys.*
**18**, 295–325.

Cartan, E. [1928] Sur la représentation géométrique des systèmes matèriels non holonomes.*Atti. Cong. Int. Matem.*
**4**, 253–261.

Chaplygin, S. A. [1897a] On the motion of a heavy body of revolution on a horizontal plane (in Russian).*Physics Section of the Imperial Society of Friends of Physics, Anthropology and Ethnographics*, Moscow**9**, 10–16. (Reproduced inChaplygin [1954, 413–425].)

Chaplygin, S. A. [1897b] On some feasible generalization of the theorem of area, with an application to the problem of rolling spheres (in Russian).*Mat. Sbornik*
**20**, 1–32. (Reproduced inChaplygin [1954, 434–454].)

Chaplygin, S. A. [1903] On a rolling sphere on a horizontal plane (in Russian).*Mat. Sbornik*
**24**, 139–168. (Reproduced inChaplygin [1949, 72–99] andChaplygin [1954, 455–471].)

Chaplygin, S. A. [1911] On the theory of the motion of nonholonomic systems. Theorem on the reducing factor (in Russian).*Mat. Sbornik*
**28**, 303–314. (Reproduced inChaplygin [1949, 28–38] andChaplygin [1954, 426–433].)

Chaplygin, S. A. [1949]*Analysis of the Dynamics of Nonholonomic Systems* (in Russian). Classical Natural Sciences, Moscow.

Chaplygin, S. A. [1954]*Selected Works on Mechanics and Mathematics* (in Russian). State Publ. House, Technical-Theoretical Literature, Moscow.

Crabtree, H. [1909]*Spinning Tops and Gyroscopic Motion*. Chelsea.

Cushman, R., J. Hermans, &D. Kemppainen [1995] The rolling disc. In*Nonlinear Dynamical Systems and Chaos (Groningen, 1995)*, Progr. Nonlinear Differential Equations Appl.,**19**, Birkhäuser, Basel, 21–60.

Cushman, R., D. Kemppainen, J. Śniatycki &L. Bates [1995] Geometry of nonholonomic constraints.*Rep. Math. Phys.*
**36**, 275–286.

Enos, M. J. (ed.) [1993]*Dynamics and Control of Mechanical Systems*, Fields Inst. Commun., Amer. Math. Soc.**1**.

Getz, N. H. [1993] Control of nonholonomic systems with dynamically decoupled actuators.*Proc. 32nd IEEE Control & Decision Conf.*, San Antonio, December 1993.

Getz, N. H. [1994] Control of balance for a nonlinear nonholonomic non-minimum phase model of a bicycle.*Proc. Amer. Control Conf.*, Baltimore, June, 1994.

Getz, N. H. &J. E. Marsden [1994 Symmetry and dynamics of the rolling disk. Preprint, 630, Center for Pure and Applied Mathematics, Univ. California, Berkeley.

Getz, N. H. &J. E. Marsden [1995] Control for an autonomous bicycle.*IEEE Intern. Conf. on Robotics and Automation*, Nagoya, Japan, May, 1995

Hermans, J. [1995] A symmetric sphere rolling on a surface,*Nonlinearity*
**8**, 1–23.

Hermans, J. [1995]*Rolling Rigid Bodies, with and without Symmetries*, Ph.D. Thesis, University of Utrecht.

Hamel, G. [1904] Die Lagrange-Eulerschen Gleichungen der Mechanik.*Z. f. Math. u. Phys.*
**50**, 1–57.

Jalnapurkar, S. [1995] The role of forces in nonholonomic systems, Preprint, Univ. California, Berkeley.

Jurdjevic, V. [1993] The geometry of the plate-ball problem.*Arch. Rational Mech. Anal.*
**124**, 305–328.

Karapetyan, A. V. [1994] On the specific character of the application of Routh's theory to systems with differential constraints.*J. Appl. Math. Mech.*
**58**, 387–392. (See also*J. Appl. Math. Mech.*
**51** (1987), 431–436.)

Karapetyan, A. V. &V. V. Rumyantsev [1990] Stability of conservative and dissipative systems, in*Applied Mechanics: Soviet Reviews*
**1**, G.K. Mikhailov and V.Z. Parton (eds.), Hemisphere NY.

Kelly, S. D. &R. M. Murray [1995] Geometric phases and robotic locomotion.*J. Robotic Systems*
**12**, no. 6, 417–431

Kobayashi, S. &K. Nomizu [1963]*Foundations of Differential Geometry*. Wiley

Koiller, J. [1992] Reduction of some classical nonholonomic systems with symmetry.*Arch. Rational Mech. Anal.*
**118**, 113–148.

Koon, W-S. &J.E. Marsden [1996a] Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction.*SIAM J. Control and Optim. (to appear)*.

Koon, W-S. &J.E. Marsden [1996b] The Hamiltonian and Lagrangian Approaches to the Dynamics of Nonholonomic Systems.*Preprint*, California Institute of Technology.

Kozlov, V.V. &N.N. Kolesnikov [1978] On theorems of dynamics.*Prikl. Mat. Mekh.*
**42**, 28–33.

Krishnaprasad, P.S. [1989] Eulerian many-body problems.*Contemp. Math. Amer. Math. Soc.*
**97**, 187–208.

Krishnaprasad, P. S. [1990] Geometric phases and optimal reconfiguration for multibody systems.*Proc. Amer. Control Conf.*, 2440–2444.

Krishnaprasad, P. S., W. Dayawansa &R. Yang [1992] The geometry of nonholonomic constraints. Preprint, University of Maryland.

Lam, S. H. [1994] Lagrangian dynamics and its control formulation. Preprint, MAE 1993, Mechanical Engineering, Princeton University.

Lewis, A. &R. M. Murray [1994] Variational principles in constrained systems: theory and experiments,*Intern. J. Nonlinear Mech.*
**30**, 793–815.

Lewis, A., J. P. Ostrowski, R. M. Murray &J. Burdick [1994] Nonholonomic mechanics and locomotion: the snakeboard example.*IEEE Intern. Conf. on Robotics and Automation*.

Marle, C.-M. [1995] Reduction of constrained mechanical systems and stability of relative equilibria.*Comm. Math. Phys.*
**174**, 295–318.

Marsden, J. E., P. S. Krishnaprasad &J. C. Simo (eds.) [1989]*Dynamics and Control of Multibody Systems*. Contemp. Math., Amer. Math. Soc.**97**.

Marsden, J. E. [1992]*Lectures on Mechanics*. Cambridge University Press.

Marsden, J. E., R. Montgomery &T. S. Ratiu [1990]*Reduction, Symmetry, and Phases in Mechanics*. Mem. Amer. Math. Soc.**436**.

Marsden, J. E., G. W. Patrick &W. F. Shadwick, (eds.) [1996]*Integration Algorithms and Classical Mechanics*. Fields Inst. Commun.,**10**, Am. Math. Soc.

Marsden, J. E. &T. S. Ratiu [1994]*An Introduction to Mechanics and Symmetry*. Springer-Verlag.

Marsden, J. E. &T. S. Ratiu [1986] Reduction of Poisson Manifolds.*Lett. Math. Phys.*
**11**, 161–170.

Marsden, J. E. &J. Scheurle [1993a] Lagrangian reduction and the double spherical pendulum.*Z. Agnew. Math. Phys.*
**44**, 17–43.

Marsden, J. E. &J. Scheurle [1993b] The reduced Euler-Lagrange equations,*Fields Inst. Commun.*, Amer. Math. Soc.**1**, 139–164.

Murray, R. M., Z. Li &S. S. Sastry [1994]*A Mathematical Introduction to Robotic Manipulation*. CRC Press.

Murray, R. M. &S. S. Sastry [1993] Nonholonomic motion planning: steering using sinusoids.*IEEE Trans. Automat. Control*
**38**, 700–716.

Neimark, Ju. I. &N. A. Fufaev [1966] On stability of stationary motions of holonomic and nonholonomic systems.*J. Appl. Math. (Prikl. Math. Mekh.)*
**30**, 293–300.

Neimark, Ju. I. &N. A. Fufaev [1972]*Dynamics of Nonholonomic Systems*. Translations of Mathematical Monographs, Amer. Math. Soc.,**33**.

O'Reilly, O. M. [1996] The dynamics of rolling disks and sliding disks.*Nonlinear Dynamics*,**10**, 287–305.

Ostrowski, J. [1995]*Geometric Perspectives on the Mechanics and Control of Undulatory Locomotion*. Ph.D. Thesis, California Institute of Technology.

Ostrowski, J., J. W. Burdick, A. D. Lewis &R. M. Murray [1995] The mechanics of undulatory locomotion: The mixed kinematic and dynamic case.*IEEE Intern. Conf. on Robotics and Automation* 1945–1951.

Poincaré, H. [1901 Sur une forme nouvelle des equations de la mecanique.*C. R. Acad. Sci.*
**132**, 369–371.

Rosenberg, R. M. [1977]*Analytical Dynamics of Discrete Systems*. Plenum Press, NY.

Routh, E. J. [1860]*Treatise on the Dynamics of a System of Rigid Bodies*. MacMillan, London.

San Martin, L. &P. E. Crouch [1984] Controllability on principal fibre bundles with compact structure group.*Systems Control Lett.*
**8**, 35–40.

Sarlett, W., F. Cantrijn andDJ J. Suanders [1995] A geometrical framework for the study of non-holonomic Lagrangian systems.*J. Phys. A: Math. Gen.*
**28**, 3253–3268.

Simo, J. C., D. Lewis &J. E. Marsden [1991] Stability of relative equilibria I: The reduced energy momentum method.*Arch. Rational Mech. Anal.*
**115**, 15–59.

Sumbatov, A. S. [1992] Developments of some of Lagrange's ideas in the works of Russian and Soviet mechanicians.*La mécanique analytique de Lagrange et son héritage*, Atti della Accademia delle Scienze di Torino, Suppl.**2, 126**, 169–200.

Tsikiris, D. P. [1995]*Motion control and planning for nonholonomic kinematic chains*. Ph.D. Thesis, Systems Research Institute, University of Maryland.

van der Schaft, A. J. &P. E. Crouch [1987] Hamiltonian and self-adjoint control systems.*Systems Control Lett.*
**8**, 289–295.

van der Schaft, A. J. &B. M. Maschke [1994] On the Hamiltonian formulation of nonholonomic mechanical systems.*Rep. Math. Phys.*
**34**, 225–233.

Vershik, A. M. &L. D. Faddeev [1981] Lagrangian mechanics in invariant form.*Sel. Math. Sov.*
**1**, 339–350.

Vershik, A. M. &V. Ya. Gershkovich [1994] Nonholonomic dynamical systems, geometry of distributions and variational problems.*Dynamical Systems VII*,V. Arnold &S. P. Novikov, eds., 1–81. Springer-Verlag.

Vierkandt, A. [1892] Über gleitende und rollende Bewegung.*Monats. der Math. u. Phys.*
**3**, 31–54.

Walker, G. T. [1896] On a dynamical top.*Quart. J. Pure Appl. Math.*
**28**, 175–184.

Wang, L. S. &P. S. Krishnaprasad [1992] Gyroscopic control and stabilization.*J. Nonlin. Sci.*
**2**, 367–415.

Weber, R. W. [1986] Hamiltonian systems with constraints and their meaning in mechanics.*Arch. Rational Mech. Anal.*
**91**, 309–335.

Whittaker, E. T. [1937]*A Treatise on the Analytical Dynamics of Particles and Rigid Bodies* Fourth Edition, Cambridge University Press.

Yang, R. [1992]*Nonholonomic Geometry, Mechanics and Control.* Ph.D. Thesis, Systems Research Institute, Univ. of Maryland.

Yang, R., P. S. Krishnaprasad &W. Dayawansa [1993] Chaplygin dynamics and Lagrangian reduction.*Proc. 2nd Intern. Cong. on Nonlinear Mechanics*,W-Z. Chien, Z. H. Guo &Y. Z. Guo, eds., Peking University Press, 745–749.

Zenkov, D. V. [1995] The Geometry of the Routh Problem,*J. Nonlin. Sci.*
**5**, 503–519.