Skip to main content
Log in

Statistical mechanics of random paths on disordered lattices

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The dependence of the universality class on the statistical weight of unrestricted random paths is explicitly shown both for deterministic and statistical fractals such as the incipient infinite percolation cluster. Equally weighted paths (ideal chain) and kinetically generated paths (random walks) belong, in general, to different universality classes. For deterministic fractals exact renormalization group techniques are used. Asymptotic behaviors for the end-to-end distance ranging from power to logarithmic (localization) laws are observed for the ideal chain. In all these cases, random walks in the presence of nonperfect traps are shown to be in the same universality class of the ideal chain. Logarithmic behavior is reflected insingular renormalization group recursions. For the disordered case, numerical transfer matrix techniques are exploited on percolation clusters in two and three dimensions. The two-point correlation function scales with critical exponents not obeying standard scaling relations. The distribution of the number of chains and the number of chains returning to the starting point are found to be well approximated by a log-normal distribution. The logmoment of the number of chains is found to have an essential type of singularity consistent with the log-normal distribution. A non-self-averaging behavior is argued to occur on the basis of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Montroll and G. Weiss,J. Math. Phys. 6:167 (1965); M. Barber and B. Ninham,Random and Restricted Walks. Theory and Applications (Gordon and Breach, New York, 1970); C. Irzykson and J. M. Drouffe,Statistical Field Theory, Vol. 1 (Cambridge University Press, Cambridge, 1989).

    Article  Google Scholar 

  2. K. Symanzik, inRendiconti della Scuola Internationale di Fisica “Enrico Fermi” (Academic Press, New York, 1969); J. Frohlich,Nucl. Phys. B 200[FS4]:281 (1982).

    Google Scholar 

  3. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press. Ithaca, New York, 1979).

    Google Scholar 

  4. J. des Cloizeaux and G. Jannik,Polymers in Solution: Their Modelling and Structure (Oxford University Press, Oxford, 1990).

    Google Scholar 

  5. J. W. Haus and K. W. Kehr,Phys. Rep. 150:263 (1987).

    Article  Google Scholar 

  6. P. de Gennes,Recherche 7:919 (1976); C. Mitescu and J. Roussenq, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Hilger, Bristol, 1983), p. 81.

    Google Scholar 

  7. A. Maritan,Phys. Rev. Lett. 62:2845 (1989).

    Article  Google Scholar 

  8. A. Giacometti, H. Nakanishi, A. Maritan, and N. H. Fuchs,J. Phys. A: Math. Gen. 25:L461 (1992).

    Article  Google Scholar 

  9. A. Giacometti and A. Maritan,Phys. Rev. E 49:227 (1994).

    Article  Google Scholar 

  10. I. Webman,Phys. Rev. Lett. 52:220 (1984); P. Argyreakis and R. Kopelman,Chem. Phys. 78:251 (1983).

    Article  Google Scholar 

  11. P. Le Dossal and J. Machta,J. Stat. Phys. 64:541 (1991), and references therein.

    Article  Google Scholar 

  12. A. Maritan,J. Phys. A 21:859 (1988); see also A. B. Harris, Y. Meir, and A. Aharony,Phys. Rev. B 38:8752 (1987).

    Article  Google Scholar 

  13. N. H. Fuchs and H. Nakanishi,Phys. Rev. A 43 (1991); H. Nakanishi, S. Mukherjee, and N. Fuchs,Phys. Rev. E 47:R1463 (1993).

    Google Scholar 

  14. A. Giacometti and H. Nakanishi, submitted toPhys. Rev. E (1994).

  15. M., Donsker and S. R. S. Varadhan,Commun. Pure Appl. Math. 28:525 (1975); T.C. Lubensky,Phys. Rev. A 30:2657 (1984); S. R. Renn,Nucl. Phys. B 275;[FS17]:273 (1986); Th. M. Nieuwenhuizen,Phys. Rev. Lett. 62:257 (1989).

    Google Scholar 

  16. L. Balents and M. Kardar,J. Stat. Phys. 67:1 (1992).

    Article  Google Scholar 

  17. J. Feder,Fractals (Plenum Press, New York, 1988).

    Google Scholar 

  18. M. E. Fisher,J. Chem. Phys. 44:616 (1966); see also P. Pincus,Macromolecules 9:383 (1976).

    Article  Google Scholar 

  19. A. Harris and A. Aharony,Europhys. Lett. 4:1355 (1987); A. Bunde, S. Havlin, and H. E. Roman,Phys. Rev. A 42:6274 (1990)

    Google Scholar 

  20. G. H. Hardy,Divergent Series (Oxford University Press, Oxford, 1949).

    Google Scholar 

  21. J. Vannimenus and M. Knezevic,Europhys. Lett. 3:21 (1987).

    Google Scholar 

  22. Th. Nieimejer and J. M. J. Leeween,Phys. Rev. Lett. 31:1411 (1973).

    Article  Google Scholar 

  23. S. Alexander and R. Orbach,J. Phys. (Paris)45:625 (1982).

    Google Scholar 

  24. A. Maritan, A. L. Stella, and F. Toigo,Phys. Rev. B 40:9269 (1989).

    Article  Google Scholar 

  25. L. de Arcangelis, S. Redner, and A. Coniglio,Phys. Rev. B 31:4725 (1985).

    Article  Google Scholar 

  26. D. Jacobs and H. Nakanishi,Phys. Rev. A 41:706 (1990).

    Article  Google Scholar 

  27. M. F. Sykes and J. W. Essam,J. Math. Phys. 5:1117 (1964).

    Article  Google Scholar 

  28. A. Coniglio, inMagnetic Phase Transitions, M. Ausloos and R. J. Elliot, eds. (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  29. B. Ya. Balagurov and V. G. Vaks,Sov. Phys.-JETP 38:968 (1974).

    Google Scholar 

  30. P. Grassberger and I. Procaccia,J. Chem. Phys. 77:12 (1982).

    Article  Google Scholar 

  31. S. Kirkpatrick, inIll-Condendensed Matter: Les Houches 1978, R. Balian, R. Maynard, and G. Toulouse, eds. (North-Holland, Amsterdam, 1979).

    Google Scholar 

  32. R. Rammal and G. Toulouse,J. Phys. (Paris)44:L13 (1983).

    Google Scholar 

  33. K. Binder and A. P. Young,Rev. Mod. Phys. 58:801 (1986).

    Article  Google Scholar 

  34. S. A. Orszag,Phys. Fluids 13:2211 (1970); see also W. Feller,An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed. (Wiley, New York, 1957).

    Article  Google Scholar 

  35. B. Derrida,Phys. Rep. 103:41 (1984).

    Article  Google Scholar 

  36. A. Maritan, G. Sartoni, and A. I. Stella,Phys. Rev. Lett. 71:1027 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacometti, A., Maritan, A. & Nakanishi, H. Statistical mechanics of random paths on disordered lattices. J Stat Phys 75, 669–706 (1994). https://doi.org/10.1007/BF02186876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186876

Key Words

Navigation