Skip to main content
Log in

A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeastSchizosaccharomyces pombe

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

A strong growth inhibition is observed when the human p53 tumor suppressor gene product is expressed in the fission yeastSchizosaccharomyces pombe. This growth inhibition is specific for wild-type p53; mutant alleles of p53 derived from human tumors show a greatly decreased ability to inhibit growth. These data suggest that there may be a p53-responsive pathway inS. pombe. To identify elements in this pathway genetically, we isolated a mutant yeast strain in which the growth inhibitory activity of p53 is largely suppressed. In addition, the activity of p53 as a transcription factor is also decreased in this strain. The suppression of p53 activity is not due to a decrease in p53 expression or a failure of p53 to localize to the nucleus. This p53 suppressor mutation is in a novelS. pombe gene with homology to thioredoxin reductase genes, and has been namedtrr1. Strains with a mutation of, or deletion in,trr1 are sensitive to oxidizing agents, suggesting that thetrr1 suppressor mutation causes partial loss oftrr1 function. Since oxidizing agents are able to suppress p53 activity in vitro, thistrr1 mutation may affect the activity of p53 in fission yeast by increasing the oxidation state of the tumor suppressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  Google Scholar 

  • Barak Y, Juven T, Haffner R, Oren M (1993)mdm-2 expression is induced by wild-type p53 activity. EMBO J 12:461–468

    PubMed  Google Scholar 

  • Bargonetti J, Manfredi JJ, Chen X, Marshak DR, Prives C (1993) A proteolytic fragment from the central region of p53 has marked sequence-specific DNA binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev 7:2565–2574

    PubMed  Google Scholar 

  • Beach D, Rodgers L, Gould J (1985)ran1 + controls the transition from mitotic division to meiosis in fission yeast. Curr Genet 10:297–311

    PubMed  Google Scholar 

  • Bischoff JR, Casso D, Beach D (1991) A yeast system to study human p53. In: Origins of human cancer: a comprehensive review. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 51–63

    Google Scholar 

  • Bischoff JR, Casso D, Beach D (1992) Human p53 inhibits growth in the fission yeastSchizosaccharomyces pombe. Mol Cell Biol 12:1405–1411

    PubMed  Google Scholar 

  • Booher RN, Beach D (1987) Interaction between cdc13+ and cdc2+ in the control of mitosis in fission yeast; dissociation of the G1 and G2 roles of the cdc2+ protein kinase. EMBO J 6:3441–3447

    PubMed  Google Scholar 

  • Booher RN, Alpha CE, Hyams JS, Beach DH (1989) The fission yeast cdc2/cdc13/sucl protein kinase: regulation of catalytic activity and nuclear localization. Cell 58:485–497

    PubMed  Google Scholar 

  • Caelles C, Helmberg A, Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53 target genes. Nature 370:220–223

    PubMed  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994a) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    PubMed  Google Scholar 

  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994b) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Nat Acad Sci USA 91:7017–7021

    PubMed  Google Scholar 

  • Cho YJ, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355

    PubMed  Google Scholar 

  • Cottarel G, Beach D, Deuschle U (1993) Two multipurpose multicopySchizosaccharomyces pombe vectors pSP1 and pSP2. Curr Genet 23:547–548

    PubMed  Google Scholar 

  • Delphin C, Cahen P, Lawrence JJ, Baudier J (1994) Characterization of baculovirus recombinant wild-type p53. Dimerization of p53 is required for high affinity DNA binding and cysteine oxidation inhibits DNA binding. Eur J Biochem 223:683–692

    PubMed  Google Scholar 

  • Demple B (1991) Regulation of bacterial oxidative stress genes. Annu Rev Genet 25:315–337

    PubMed  Google Scholar 

  • Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm ofEscherichia coli. Science 262:1744–1747

    PubMed  Google Scholar 

  • El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Defining of a consensus binding site for p53. Nature Genet 1:45–49

    PubMed  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu V, Levy D, Vogelstein B (1993) Waf-1: a potential mediator of p53 tumor suppression. Cell 75:817–825

    PubMed  Google Scholar 

  • Field J, Nikawa JI, Broek D, MacDonald B, Rodgers L, Wilson IA, Lerner RA, Wigler M (1988) Purification of a RAS-responsive adenylyl cyclase complex fromSaccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol 8:2159–2165

    PubMed  Google Scholar 

  • Fields S, Jang SK (1990) Presence of a potent transcriptional activating sequence in the p53 protein. Science 249:1046–1049

    PubMed  Google Scholar 

  • Fornace AJ, Alamo IJ, Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85:8800–8804

    PubMed  Google Scholar 

  • Forsburg SL, Guarente L (1988) Mutational analysis of upstream activation sequence 2 of theCYC1 gene ofSaccharomyces cerevisiae: aHAP2-HAP3-responsive site. Mol Cell Biol 8:647–654

    PubMed  Google Scholar 

  • Friend S (1994) p53: a glimpse at the puppet behind the shadow play. Science 265:334–335

    PubMed  Google Scholar 

  • Gannon JV, Lane DP (1991) Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature 349:802–805

    PubMed  Google Scholar 

  • Ginsberg D, Mechta F, Yaniv M, Oren M (1991) Wild-type p53 can down-modulate the activity of various promoters. Proc Natl Acad Sci USA 88:9979–9983

    PubMed  Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974)Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics, vol. 1. Plenum Publishing, New York, pp 395–446

    Google Scholar 

  • Haffner R, Oren M (1995) Biochemical properties and biological effects of p53. Curr Biol 5:84–90

    Google Scholar 

  • Hainault P, Milner J (1993a) Redox modulation of p53 conformation and sequence-specific DNA binding. Cancer Res 53:4469–4473

    PubMed  Google Scholar 

  • Hainault P, Milner J (1993b) A structural role for metal ions in the “wild-type” conformation of the tumor suppressor protein p53. Cancer Res 53:1739–1742

    PubMed  Google Scholar 

  • Hannon GJ, Casso D, Beach D (1994) KAP: a dual-specificity phosphatase that interacts with cyclin-dependent kinases. Proc Natl Acad Sci USA 91:1731–1735

    PubMed  Google Scholar 

  • Harlow E, Crawford LV, Pim PC, Williamson NM (1981) Monoclonal antibodies specific for simian virus 40 tumor antigen. J Virol 39:861–869

    PubMed  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 cdk-interacting protein Cip-1 is a potent inhibitor of G1 cyclin dependent kinases. Cell 75:805–816

    PubMed  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13693–13766

    PubMed  Google Scholar 

  • Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S (1994) Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci USA 91:6098–6102

    PubMed  Google Scholar 

  • Jayaraman L, Prives C (1995) Activation of p53 sequence-specific binding by short single stands of DNA requires the p53 C-terminus. Cell 81:1021–1031

    PubMed  Google Scholar 

  • Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BV, Vogelstein, Fornace AJ (1992) A mammalian cell cycle check point pathway utilizing p53 and GADD45 is defective in ataxia-telangectasia. Cell 71:587–597

    PubMed  Google Scholar 

  • Lane DP (1994) p53 and human cancers. Brit Med Bull 50:582–599

    PubMed  Google Scholar 

  • Leupold U (1970) Genetic methods forSchizosaccharomyces pombe. Methods Cell Physiol 4:169–177

    Google Scholar 

  • Lee S, Elenbaas B, Levine A, Griffith J (1995) p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81:1013–1020

    PubMed  Google Scholar 

  • Lowndes NF, McInery CJ, Johnson AL, Fantes PA, Johnston LH (1992) Control of DNA synthesis genes in fission yeast by the cell cycle genecdc10 +. Nature 355:449–453

    PubMed  Google Scholar 

  • Maltzman W, Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4:1689–1694

    PubMed  Google Scholar 

  • Martin DW, Munoz RM, Subler MA, Deb S (1993) p53 binds the TATA-binding protein-TATA complex. J Biol Chem 268:13062–13067

    PubMed  Google Scholar 

  • Martinez J, Georgoff I, Martinez J, Levine AJ (1991) Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev 5:151–159

    PubMed  Google Scholar 

  • Maundrell K (1993) Thiamine-repressible vectors pREP and pRIP for fission yeast. Gene 123:127–130

    PubMed  Google Scholar 

  • Maundrell K (1990)nmt1 of fission yeast: a highly transcribed gene completely repressed by thiamine. J Biol Chem 265:10857–10864

    PubMed  Google Scholar 

  • Mitomo K, Nakayama K, Fujimoto K, Sun X, Seki S, Yamamoto K (1994) Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitro. Gene 145:197–203

    PubMed  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the humanbax gene. Cell 80:293–299

    PubMed  Google Scholar 

  • Mizukami T, Chang WI, Garkavtsev I, Kaplan N, Lombardi D, Matsumoto T, Niwa O, Kounosu A, Yanagiga M, Marr TG, Beach D (1993) A 13 kb resolution cosmid map of the 14 Mb fission yeast genome by nonrandom sequence-tagged site mapping. Cell 73:121–132

    PubMed  Google Scholar 

  • Moll UM, Riou G, Levine AJ (1992) Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 89:7262–7266

    PubMed  Google Scholar 

  • Muller EGD (1994) Deoxyribonucleotides are maintained at normal levels in a yeast thioredoxin mutant defective in DNA synthesis. J Biol Chem 269:24466–24471

    PubMed  Google Scholar 

  • Nakanishi N, Yamamoto M (1984) Analysis of the structure and transcription of thearo3 gene cluster inSchizosaccharomyces pombe. Mol Gen Genet 195:164–169

    PubMed  Google Scholar 

  • Nigro JM, Sikorski R, SI Reed SI, Vogelstein B (1992) Human p53 and CDC2Hs genes combine to inhibit the proliferation ofSaccharomyces cerevisiae. Mol Cell Biol 12:1357–1365

    PubMed  Google Scholar 

  • Okamoto K, Beach D (1994) Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J 13:4816–4822

    PubMed  Google Scholar 

  • Okazaki K, Okazaki N, Kume S, Jinno S, Tanaka K, Okayama H (1990) High-frequency transformation method and library-transducing vectors for cloning mammalian cDNAs by transcomplementation inSchizosaccharomyces pombe. Nucleic Acids Res 18:6485

    PubMed  Google Scholar 

  • Okuno H, Akahori A, Sato H, Xanthoudakis S, Curran T, Iba H (1992) Escape from redox regulation enhances the transforming activity offos. Oncogene 7:695–701

    Google Scholar 

  • Raycroft L, Wu H, Lozano G (1990) Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051

    PubMed  Google Scholar 

  • Russel M, Model P, Holmgren A (1990) Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis. J Bacteriol 172:1923–1929

    PubMed  Google Scholar 

  • Russell P (1989) Gene cloning and expression in fission yeast. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, New York, pp 244–271

    Google Scholar 

  • Scharer E, Iggo R (1992) Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res 20:1539–1545

    PubMed  Google Scholar 

  • Shaulsky G, Ben-Ze'ev A, Rotter V (1990) Nuclear accumulation of p53 is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 10:6567–6577

    Google Scholar 

  • Soussi T, deFromental CC, May P (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952

    PubMed  Google Scholar 

  • Soussi T, Legros Y, Lubin R, Ory K, Schlichtholz B (1994) Multifactorial analysis of p53 altertion in human cancer: a review. Int J Cancer 57:1–9

    PubMed  Google Scholar 

  • Thut C, Chen J-L, Klemm R, Tjian R (1995) p53 transcriptional activation mediated by coactivators TAFII40, and TAFII60. Science 267:100–104

    PubMed  Google Scholar 

  • Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD, Storz G (1994) Redox-dependent shift of OxyR-DNA contacts along an extended DNA binding site: a mechanism for different promoter selection. Cell 78:897–909

    PubMed  Google Scholar 

  • Truant R, Xiao H, Ingles CJ, Greenblatt J (1993) Direct interaction between the transactivation domain of human p53 and the TATA binding protein. J Biol Chem 268:2284–2287

    PubMed  Google Scholar 

  • Uemura T, Yanagidal M (1984) Isolation of type I and type II topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J 3:1737–1744

    PubMed  Google Scholar 

  • Wagner P, Simanis V, Maimets T, Keenan E, Addison C, Brain R, Grimaldi M, Sturzbecher HW, Jenkins J (1991) A human tumorderived mutant p53 protein induces a p34cdc2-reversible growth arrest in fission yeast. Oncogene 6:1539–1547

    PubMed  Google Scholar 

  • Wagner P, Grimaldi M, Jenkins JR (1993) Putative dehydrogenase tms1 suppresses growth arrest induced by a p53 tumor mutant in fission yeast. Eur J Biochem 217:731–736

    PubMed  Google Scholar 

  • Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    PubMed  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin-6 Nature 352:345–347

    PubMed  Google Scholar 

  • Zhang MQ, Marr TG (1994) Fission yeast gene structure and recognition. Nucleic Acids Res 22:1750–1759

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Y. Thomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casso, D., Beach, D., Casso, D. et al. A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeastSchizosaccharomyces pombe . Molec. Gen. Genet. 252, 518–529 (1996). https://doi.org/10.1007/BF02172398

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172398

Key words

Navigation