Skip to main content
Log in

Mammalian heat shock protein families. Expression and functions

  • Multi-Author Reviews
  • Heat Shock Proteins
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

When prokaryotic or eukaryotic cells are submitted to a transient rise in temperature or to other proteotoxic treatments, the synthesis of a set of proteins called the heat shock proteins (hsp) is induced. The structure of these proteins has been highly, conserved during evolution. The signal leading to the transcriptional activation of the corresponding genes is the accumulation of denatured and/or aggregated proteins inside the cells after stressful treatment. The expression of a subset of hsp is also induced during early embryogenesis and many differentiation processes.

Two different functions have been ascribed to hsp:

  • - a molecular chaperone function: chaperones mediate the folding, assembly or translocation across the intracellular membranes of other polypeptides, and

  • - a role in protein degradation: some of the essential components of the cytoplasmic ubiquitin-dependent degradative pathway are hsp.

These functions of hsp are essential in every living cell. They are required for repairing the damage resulting from stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Beckmann, R. P., Mizzen, L. A., and Welch, W. J., Interaction of hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science248 (1990) 850–854.

    Article  CAS  PubMed  Google Scholar 

  2. Bensaude, O., Babinet, C., Morange, M., and Jacob, F., Heat-shock-proteins, first major products of zygotic gene activity in mouse embryo. Nature (London)305 (1983) 331–333.

    Article  CAS  PubMed  Google Scholar 

  3. Blumberg, H., and Silver, P. A., A homologue of the bacterial heat-shock geneDnaJ that alters protein sorting in yeast. Nature349 (1991) 627–629.

    Article  CAS  PubMed  Google Scholar 

  4. Bochkareva, E. S., Lissin, N. M., and Girshovich, A. S., Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature336 (1988) 254–257.

    Article  CAS  PubMed  Google Scholar 

  5. Bond, U., and Schlesinger, M. J., Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Molec. cell. Biol.5 (1985) 949–956.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Buchner, J., Schmidt, M, Fuchs, M., Jaenicke, R., Rudolph, R., Schmidt, F. X., and Kiefhaber, T., GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry30 (1991) 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  7. Catelli, M. G., Binart, N., Jung-Testas, I., Renoir, J. M., Baulieu, E. E., Feramisco, J. R., and Welch, W. J., The common 90-kd protein component of non-transformed ‘8S’ steroid receptors is a heat shock protein. EMBO J.4 (1985) 3131–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshavsky, A., A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science243 (1989) 1576–1583.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, M. Y., Hartl, F. U., Martin, J., Pollock, R. A., Kalousek, F., Neupert, W., Hallberg, E. M., Hallberg, R. L., and Horwich, A. L., Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature337 (1989) 620–625.

    Article  CAS  PubMed  Google Scholar 

  10. Chiang, H. L., Terlecky, S. R., Plant, C. P., and Dice, J. F., A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science246 (1989) 382–385.

    Article  CAS  PubMed  Google Scholar 

  11. Chirico, W. J., Waters, M. G., and Blobel, G., 70K heat shock related proteins stimulate protein translocation into microsomes. Nature332 (1988) 805–810.

    Article  CAS  PubMed  Google Scholar 

  12. Ciechanover, A., Finley, D., and Varshavsky, A., Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell37 (1984) 57–66.

    Article  CAS  PubMed  Google Scholar 

  13. Creighton, T. E., Unfolding protein folding. Nature352 (1991) 17–18.

    Article  CAS  PubMed  Google Scholar 

  14. De Benedetti, A., and Baglioni, C., Activation of Hemin-regulated initiation factor-2 kinase in heat-shocked HeLa cells. J. biol. Chem.261 (1986 338–342.

    Article  PubMed  Google Scholar 

  15. Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A., and Schekman, R., A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature332 (1988) 800–805.

    Article  CAS  PubMed  Google Scholar 

  16. DiDomenico, B. J., Bugaisky, G. E., and Lindquist, S., The heat shock response is self-regulated at both the transcriptional and post-transcriptional levels. Cell31 (1982) 593–603.

    Article  CAS  PubMed  Google Scholar 

  17. Dubois, M. F., Bensaude, O., and Morange, M., Conversion IIa/IIo de l'ARN polymérase II pendant le choc thermique. C.r. Acad. Sci. Paris, Série III313 (1991) 165–170.

    CAS  Google Scholar 

  18. Dubois, M. F., Hovanessian, A. G., and Bensaude, O., Heat-shock-induced denaturation of proteins. Characterization of the insolubilization of the interferon-induced p68 kinase. J. biol. Chem.266 (1991) 9707–9711.

    Article  CAS  PubMed  Google Scholar 

  19. Ellis, R. J., and Hemmingsen, S. M., Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem. Sci.14 (1989) 339–342.

    Article  CAS  PubMed  Google Scholar 

  20. Eytan, E., Ganoth, D., Armon, T., and Hershko, A., ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. natl Acad. Sci. USA86 (1989) 7751–7755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flaherty, K. M., DeLuca-Flaherty, C., and McKay, D. B., Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature346 (1990) 623–628.

    Article  CAS  PubMed  Google Scholar 

  22. Flynn, G. C., Chappell, T. G., and Rothman, J. E., Peptide binding and release by proteins implicated as catalysts of protein assembly. Science245 (1989) 385–390.

    Article  CAS  PubMed  Google Scholar 

  23. Flynn, G. C., Pohl, J., Flocco, M. T., and Rothman, J. E., Peptide binding specificity of the molecular chaperone BiP. Nature353 (1991) 726–730.

    Article  CAS  PubMed  Google Scholar 

  24. Gaitanaris, G. A., Papavassiliou, A. G., Rubock, P., Silverstein, S. J., and Gottesman, M. E., Renaturation of denatured λ repressor requires heat shock proteins. Cell61 (1990) 1013–1020.

    Article  CAS  PubMed  Google Scholar 

  25. Goloubinoff, P., Christeller, J. T., Gatenby, A. A., and Lorimer, G. H., Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature342 (1989) 884–889.

    Article  CAS  PubMed  Google Scholar 

  26. Goloubinoff, P., Christeller, J. T., Gatenby, A. A., and Lorimer, G. H., Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature342 (1989) 884–889.

    Article  CAS  PubMed  Google Scholar 

  27. Gruppi, C. M., Zakeri, Z. F., and Wolgemuth, D. J., Stage and lineage regulated expression of two HSP90 transcripts during mouse germ cell differentiation and embryogenesis. Molec. Reprod. Dev.28 (1991) 209–217.

    Article  CAS  PubMed  Google Scholar 

  28. Hemmingsen, S. M., Woolford, C., Van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R. W., and Ellis, R. J., Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature333 (1988) 330–334.

    Article  CAS  PubMed  Google Scholar 

  29. Hershko, A., The ubiquitin pathway for protein degradation. Trends Biochem. Sci.16 (1991) 265–268.

    Article  CAS  PubMed  Google Scholar 

  30. Hightower, L. E., Heat shock, stress proteins, chaperones and proteotoxicity. Cell66 (1991) 191–197.

    Article  CAS  PubMed  Google Scholar 

  31. Iida, H., and Yahara, I., Yeast heat shock protein of Mr 48 000 is an isoprotein of enolase. Nature315 (1985) 688–690.

    Article  CAS  Google Scholar 

  32. Kang, P. J., Ostermann, J., Shilling, J., Neupert, W., Craig, E. A., and Pfanner, N., Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature348 (1990) 137–142.

    Article  CAS  PubMed  Google Scholar 

  33. Klemenz, R., Fröhli, E., Steiger, R. H., Schäfer, R., and Aoyama, A., αB-crystallin is a small heat shock protein. Proc. natl Acad. Sci. USA88 (1991) 3652–3656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koyasu, S., Nishida, E., Kadowaki, T., Matsuzaki, F., Iida, K., Harada, F., Kasuga, M., Sakai, H., and Yahara, I., Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc. natl Acad. Sci. USA83 (1986) 8054–8058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laminet, A. A., Ziegelhofer, T., Georgopoulos, C., and Plückthun, A., TheEscherichia coli heat shock proteins GroEL and GroES modulate the folding of the β-lactamase precursor. EMBO J.9 (1990) 2315–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Landry, J., Chrétien, P., Lambert, H., Hickey, E., and Weber, L. A., Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol.109 (1989) 7–15.

    Article  CAS  PubMed  Google Scholar 

  37. Laszlo, L., Doherty, F. J., Osborn, N. U., and Mayer, R. J., Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts. FEBS Lett.261 (1990) 365–368.

    Article  CAS  PubMed  Google Scholar 

  38. Legagneux, V., Mezger, V., Quélard, C., Barnier, J. V., Bensaude, O., and Morange, M., High constitutive transcription of HSP86 gene in murine embryonal carcinoma cells. Differentiation41 (1989) 42–48.

    Article  CAS  PubMed  Google Scholar 

  39. Legagneux, V., Morange, M., and Bensaude, O., Heat-shock and related stress enhance RNA polymerase II C-terminal-domain kinase activity in HeLa cell extracts. Eur. J. Biochem.193 (1990) 121–126.

    Article  CAS  PubMed  Google Scholar 

  40. Lindquist, S., The heat shock response. A. Rev. Biochem.55 (1986) 1151–1191.

    Article  CAS  Google Scholar 

  41. Lindquist, S., and Craig, E. A., The heat-shock proteins. A. Rev. Genet.22 (1988) 631–677.

    Article  CAS  Google Scholar 

  42. Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A. L., and Hartl, F. U., Chaperonin-mediated protein folding at the surface of GroEL through a ‘molten globule’-like intermediate. Nature352 (1991) 36–42.

    Article  CAS  PubMed  Google Scholar 

  43. Matthews, W., Tanaka, K., Driscoll, J., Ichihara, A., and Goldberg, A. L., Involvement of the proteasome in various degradative processes in mammalian cells. Proc. natl Acad. Sci. USA86 (1989) 2597–2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mezger, V., Bensaude, O., and Morange, M., Unusual levels of HSE-binding activity in embryonal carcinoma cells. Molec. cell. Biol.9 (1989) 3888–3896.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Morange, M., Diu, A., Bensaude, O., and Babinet, C., Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells. Molec. cell. Biol.4 (1984) 730–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Morimoto, R. I., Tissières, A., and Georgopoulos, C., (Eds) Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press 1990.

  47. Munro, S., and Pelham, H. R. B., An hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell46 (1986) 291–300.

    Article  CAS  PubMed  Google Scholar 

  48. Nagata, K., Saga, S., and Yamada, K. M., A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J. Cell Biol.103 (1986) 223–229.

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen, V. T., Morange, M., and Bensaude, O., Protein denaturation during heat shock and related stress. J. biol. Chem.264 (1989) 10487–10492.

    Article  CAS  PubMed  Google Scholar 

  50. Nishida, E., Koyasu, S., Sakai, H., and Yahara, I., Calmodulin-regulated binding of the 90-kDa heat shock protein to actin filaments. J. biol. Chem.261 (1986) 16033–16036.

    Article  CAS  PubMed  Google Scholar 

  51. Nover, L., The Heat Shock Response. CRC Press, Boca Raton, Florida 1991.

    Google Scholar 

  52. Opperman, H., Levinson, W., and Bishop, J. M., A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat shock protein. Proc. natl Acad. Sci. USA78 (1981) 1067–1071.

    Article  Google Scholar 

  53. Ostermann, J., Horwich, A. L., Neupert, W., and Hartl, F. U., Protein folding in mitochondria requires complex formation with hsp60 and ATP hyrolysis. Nature341 (1989) 125–130.

    Article  CAS  PubMed  Google Scholar 

  54. Pelham, H. R. B., Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J.3 (1984) 3095–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pelham, H. R. B., Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell46 (1986) 959–961.

    Article  CAS  PubMed  Google Scholar 

  56. Picard, D., Khursheed, B., Garabedian, M. J., Fortin, M. G., Lindquist, S., and Yamamoto, K. R., Reduced levels of hsp90 compromise receptor action in vivo. Nature348 (1990) 166–168.

    Article  CAS  PubMed  Google Scholar 

  57. Pinto, M., Morange, M., and Bensaude, O., Denaturation of proteins during heat shock. In vivo recovery of solubility and activity of reporter enzymes. J. biol. Chem.266 (1991) 13941–13946.

    Article  CAS  PubMed  Google Scholar 

  58. Piper, P. W., Curran, B., Davies, M. W., Lockheart, A., and Reid, G., Transcription of the phosphoglycerate kinase gene ofSaccharomyces cerevisiae increases when fermentative cultures are stressed by heat shock. Eur. J. Biochem.161 (1986) 525–531.

    Article  CAS  PubMed  Google Scholar 

  59. Rechsteiner, M., Natural substrates of the ubiquitin proteolytic pathway. Cell66 (1991) 615–618.

    Article  CAS  PubMed  Google Scholar 

  60. Renoir, J. M., Radanyi, C., Faber, L. E., and Baulieu, E. E., The non-DNA-binding heterooligomeric form of mammalian steroid hormone receptors contains a hsp90-bound 59-kilodalton protein. J. biol. Chem.265 (1990) 10740–10745.

    Article  CAS  PubMed  Google Scholar 

  61. Rippmann, F., Taylor, W. R., Rothbard, J. B., and Green, N. M., A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA. EMBO J.10 (1991) 1053–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rothman, J. E., Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell59 (1989) 591–601.

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez, E. R., Hsp56: a novel heat shock protein associated with untransformed steroid receptor complexes. J. biol. Chem.265 (1990) 22067–22070.

    Article  CAS  PubMed  Google Scholar 

  64. Sanchez, E. R., Redmond, T., Scherrer, L. C., Bresnick, E. H., Welsh, M. J., and Pratt, W. B., Evidence that the 90-kilodalton heat shock protein is associated with tubulin-containing complexes in L cell cytosol and in intact PtK cells. Molec. Endocr.2 (1988) 756–760.

    Article  CAS  PubMed  Google Scholar 

  65. Scherer, P. E., Krieg, U. C., Hwang, S. T., Vestweber, D., and Schatz, G., A precursor protein partly translocated into yeast mitochondria is bound to a 70 kd mitochondrial stress protein. EMBO J.9 (1990) 4315–4322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schuh, S., Yonemoto, W., Brugge, J., Bauer, V. J., Riehl, R. M., Sullivan, W. P., and Toft, D. O., A 90,000-Dalton binding protein common to both steroid receptors and the Rous sarcoma Virus transforming protein, pp60vsrc. J. biol. Chem.260 (1985) 14292–14296.

    Article  CAS  PubMed  Google Scholar 

  67. Seufert, W., and Jentsch, S., Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J.9 (1990) 543–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Skowyra, D., Georgopoulos, C., and Zylicz, M., TheE. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell62 (1990) 939–944.

    Article  CAS  PubMed  Google Scholar 

  69. Sorger, P. K., Heat shock factor and the heat shock response. Cell65 (1991) 363–366.

    Article  CAS  PubMed  Google Scholar 

  70. Zakeri, Z. F., and Wolgemuth, D. J., Developmental-stage-specific expression of the hsp70 gene family during differentiation of the mammalian germ line. Molec. cell. Biol.7 (1987) 1791–1796.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zakeri, Z. F., Wolgemuth, D. J., and Hunt, C. R., Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Molec. cell. Biol.8 (1988) 2925–2932.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burel, C., Mezger, V., Pinto, M. et al. Mammalian heat shock protein families. Expression and functions. Experientia 48, 629–634 (1992). https://doi.org/10.1007/BF02118307

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02118307

Key words

Navigation