Skip to main content
Log in

The equivalence principle and an electric charge in a gravitational field

General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is shown that there is no violation of the strong principle of equivalence in the case of an electric charge either falling freely or supported in a static uniform gravitational field. For a freely falling charge, the global electromagnetic field distribution at any instant is found to be the same as that of a charge which is moving uniformly with respect to an inertial frame with a velocity equal to the instantaneous velocity of the freely falling charge. In the case of a charge supported in the gravitational field, the total electromagnetic field energy, as measured by freely falling observers instantaneously at rest with respect to the charge, is shown to be equal to the Coulomb field energy of a charge permanently stationary in an inertial frame. The conclusion here, that in neither of the two cases does the charge emit electromagnetic radiation, is independent of our choice of the observer's frame of reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jackson, J. D. (1975).Classical Electrodynamics (Wiley, New York).

    Google Scholar 

  2. Bondi, H., and Gold, T. (1955).Proc. Roy. Soc. Lond. A229, 416.

    Google Scholar 

  3. Fulton, T., and Rohrlich, F. (1960).Ann. Phys. (NY) 9, 499.

    Article  Google Scholar 

  4. Pauli, W. (1958).Theory of Relativity (Pergamon, Oxford/London).

    Google Scholar 

  5. Drukey, D. L. (1949).Phys. Rev. 76, 543.

    Article  Google Scholar 

  6. Kovetz, A., and Tauber, G. E. (1969).Amer. J. Phys. 37, 382.

    Article  Google Scholar 

  7. Boulware, D. G. (1980).Ann. Phys. (NY) 124, 169.

    Article  Google Scholar 

  8. Ginzburg, V. L. (1979).Theoretical Physics and Astrophysics (Pergamon, Oxford).

    Google Scholar 

  9. Grandy, W. T., Jr. (1991).Relativistic Quantum Mechanics of Leptons and Fields (Kluwer, Dordrecht).

    Google Scholar 

  10. Fomalont, E. B., and Sramek, R. A. (1976).Phys. Rev. Lett. 36, 1475.

    Article  Google Scholar 

  11. Desloge, E. A. (1989).Amer. J. Phys. 57, 1121.

    Article  Google Scholar 

  12. Rohrlich, F. (1963).Ann. Phys. (NY) 22, 169.

    Article  Google Scholar 

  13. Rindler, W. (1977).Essential Relativity (2nd ed., Springer-Verlag, New York).

    Google Scholar 

  14. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).

    Google Scholar 

  15. Purcell, E. M. (1965).Electricity and Magnetism — Berkeley Physics Course Vol. II (McGraw-Hill, New York).

    Google Scholar 

  16. Wheeler, J. A. (1990).A Journey into Gravity and Spacetime (Scientific American Library, New York).

    Google Scholar 

  17. Born, M. (1909).Ann. Physik 30, 1.

    Google Scholar 

  18. Panofsky, W. K. H., and Phillips, M. (1962).Classical Electricity and Magnetism (Addison-Wesley, Massachusetts).

    Google Scholar 

  19. Leibovitz, C., and Peres, A. (1963).Ann. Phys. (NY) 25, 400.

    Article  Google Scholar 

  20. GrØn, Ø., and Eriksen, E. (1989).Gen. Rel. Grav. 21, 105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singal, A.K. The equivalence principle and an electric charge in a gravitational field. Gen Relat Gravit 27, 953–967 (1995). https://doi.org/10.1007/BF02113077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02113077

Keywords

Navigation