Skip to main content
Log in

Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Using a silver staining method to detect DNA fragments produced by restriction enzymes, it was possible to compare mitochondrial DNAs (mtDNAs) from 85 individuals of the bank vole (Clethrionomys glareolus) trapped at 25 localities in Fennoscandia. There are two distinctly different mtDNA lineages, one occurring in southern and central Fennoscandia and the other in the northern parts. A fragment comparison method shows about 12.7% nucleotide sequence divergence between these two lineages. This major difference between animals of the same species could theoretically be explained by intraspecific lineage survivorship independent of species hybridization, or by introduction of an atypical mtDNA via hybridization with a closely related species. Analysis of mtDNAs from the two otherClethrionomys species present in Fennoscandia (C. rutilus andC. rufocanus) shows that the mtDNA of northernC. glareolus is very similar to that ofC. rutilus and that the mtDNA lineages of these two species cluster together in a phenogram, with small genetic distances among them. By contrast, electrophoresis of proteins encoded by 17 nuclear loci reveals fixed allelic differences between these two species at 8 loci. Hence the presence of two distinctly different mtDNA lineages withinC. glareolus may be a consequence of a limited episode of hybridization betweenC. glareolus andC. rutilus, probably during the postglacial recolonization of Fennoscandia 8000–13,000 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allendorf FW, Mitchell N, Ryman N, Ståhl G (1977) Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data. Hereditas 86:179–190

    PubMed  Google Scholar 

  • Avise JC, Lansman RA, Shade RA (1979) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genusPeromyscus. Genetics 92:279–295

    PubMed  Google Scholar 

  • Avise JC, Shapira JF, Daniel SW, Aquadro CF, Lansman RA (1983) Mitochondrial DNA differentiation during the speciation process inPeromyscus. Mol Biol Evol 1:38–56

    Google Scholar 

  • Ayala FJ (1975) Genetic differentiation during the speciation process. Evol Biol 8:1–78

    Google Scholar 

  • Barton N, Jones JS (1983) Mitochondrial DNA: new clues about evolution. Nature 306:317–318

    PubMed  Google Scholar 

  • Baverstock PR, Watts CHS, Cole SR (1977) Electrophoretic comparisons between allopatric populations of five Australian pseudomyine rodents (Muridae). Aust J Biol Sci 30:471–485

    Google Scholar 

  • Baverstock PR, Adams M, Maxson LR, Yosida TH (1983) Genetic differentiation among karyotypic forms of the black rat,Rattus rattus. Genetics 105:969–983

    Google Scholar 

  • Berg WJ, Ferris SD (1984) Restriction endonuclease analysis of salmonid mitochondrial DNA. Can J Fish Aquat Sci 41:1041–1047

    Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    PubMed  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    PubMed  Google Scholar 

  • Clayton JW, Tretiak DN (1972) Amine-citrate buffers for pH control in starch gel electrophoresis. J Fish Res Bd Can 29:1169–1172

    Google Scholar 

  • Coyne JA (1985) The genetic basis of Haldane's rule. Nature 314:736–738

    PubMed  Google Scholar 

  • Ferris SD, Sage RD, Huang C-M, Nielsen JT, Ritte U, Wilson AC (1983) Flow of mitochondrial DNA across a species boundary. Proc Natl Acad Sci USA 80:2290–2294

    PubMed  Google Scholar 

  • Grant PR (1974) Reproductive compatibility of voles from separate continents (Mammalia:Clethrionomys). J Zool London 174:245–254

    Google Scholar 

  • Guillemette JG, Lewis PNL (1983) Detection of subnanogram quantities of DNA and RNA on native and denaturing polyacrylamide and agarose gels by silver staining. Electrophoresis 4:92–94

    Google Scholar 

  • Gyllensten U, Wharton D, Wilson AC (1985) Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. J Hered 76:321–324

    PubMed  Google Scholar 

  • Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109

    Google Scholar 

  • Hale LR, Beckenbach AT (1985) Mitochondrial DNA variation inDrosophila pseudoobscura and related species in Pacific Northwest populations. Can J Genet Cytol 27:357–364

    PubMed  Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North-Holland, Amsterdam

    Google Scholar 

  • Hasegawa M, Kishino H, Taka-aki Y (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    PubMed  Google Scholar 

  • Kessler LG, Avise JC (1984) Systematic relationships among waterfowl (Anatidae) inferred from restriction endonuclease analysis of mitochondrial DNA. Syst Zool 33:370–380

    Google Scholar 

  • Kessler LG, Avise JC (1985) A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera. Mol Biol Evol 2:109–125

    PubMed  Google Scholar 

  • Lansman RA, Shade RO, Shapira JF, Avise JC (1981) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol 17:214–226

    PubMed  Google Scholar 

  • Lansman RA, Avise JC, Huettel MD (1983a) Critical experimental test of the possibility of “paternal leakage” of mitochondrial DNA. Proc Natl Acad Sci USA 80:1969–1971

    PubMed  Google Scholar 

  • Lansman RA, Avise JC, Aquadro CF, Shapira JF, Daniel SW (1983b) Extensive genetic variation in mitochondrial DNA's among geographic populations of the deer mouse,Peromyscus maniculatus. Evolution 37:1–16

    Google Scholar 

  • Matthey R (1953) Les chromosomes des Muridae. Révision critique et matériaux nouveaux pour servir á l'histoire de l'évolution chromosomique chez ces rongeurs. Rev Suisse Zool 60:225–283

    Google Scholar 

  • Nadler CF, Rausch VR, Lyapunova EA, Hoffmann RS, Vorontsov NN (1976) Chromosomal banding patterns of the Holarctic rodents,Clethrionomys rutilus andMicrotus oeconomus. Z Säugetierkunde 41:137–146

    Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    PubMed  Google Scholar 

  • Palmer JD, Shields DR, Cohen DB (1983) Chloroplast DNA evolution and the origin of amphidiploidBrassica species. Theor Appl Genet 65:181–189

    Google Scholar 

  • Powell JR (1983) Interspecific cytoplasmatic gene flow in the absence of nuclear gene flow: evidence fromDrosophila. Proc Natl Acad Sci USA 80:492–495

    PubMed  Google Scholar 

  • Rauschert K (1963) Sexuelle Affinität zwischen Arten and Unterarten von Rötelmäusen (Clethrionomys). Biol Zentralbl 82:653–664

    Google Scholar 

  • Ridgway GJ, Sherburne SW, Lewis RD (1970) Polymorphism in the esterases of Atlantic herring. Trans Am Fish Soc 99:147–151

    Google Scholar 

  • Sarich VM (1977) Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 265:24–28

    PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Spannhof L (1959) Histochemische Untersuchungen zur Sterilität bei männlichen Säugerbastarden (Artkreuzung der RötelmäuseClethrionomys glareolus×Cl. rutilus). Verh Dtsch Zool Des Zoll Anz Suppl 23:99–107

    Google Scholar 

  • Spolsky C, Uzzell T (1984) Natural interspecies transfer of mitochondrial DNA in amphibians. Proc Natl Acad Sci USA 81:5802–5805

    PubMed  Google Scholar 

  • Takahata N (1985) Introgression of extranuclear genomes in finite populations: nucleo-cytoplasmatic incompatibility. Genet Res 45:179–194

    PubMed  Google Scholar 

  • Weissinger AK, Timothy DH, Levings CS III, Goodman MM (1983) Patterns of mitochondrial DNA variation in indigenous maize races of Latin America. Genetics 104:365–379

    Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linnean Soc 26:375–400

    Google Scholar 

  • Zimmerman K (1965) Art-Hybriden bei Rötelmäusen. Z Säugetierkunde 30:315–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tegelström, H. Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus). J Mol Evol 24, 218–227 (1987). https://doi.org/10.1007/BF02111235

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02111235

Key words

Navigation