Skip to main content
Log in

The Newton-Wigner and Wightman localization of the photon

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A quantum theory of the photon is developed in a natural manner. Newton-Wigner and Wightman demonstrated that the photon could not be strictly localized according to natural criteria. These investigations involved the identification of an elementary system with a uirrep of the Poincare group. We identify a particle with the localized measurement of the states satisfying the uirrep. In the case of zero mass and unit spin, the photon is identified with those components of the state that can be localized. A c-number four-vector potential and Lorentz condition are derived from the relativistic wave equation. The Wightman localization is demonstrated for the three independent space components of the vector potential, and the photon is identified with these components. A position operator and probability density follow immediately from the localization. A consequence of the subjective definition of a photon is that the transformations of the vector potential are unitary, and hence the unitary scalar product can be obtained for the four-vector potential. A Hilbert space is defined for the three space components of the vector potential. A position operator and probability density are derived from the scalar product, which compare directly with those obtained from the localization and the non-relativistic theory. As the longitudinal and scalar polarizations do not contribute to the measured transition probability, they are considered virtual. Lastly, a conserved four-vector current is derived from the scalar product. The possibility of observing a strict localization of the photon in the laboratory is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. D. Newton and E. P. Wigner,Rev. Mod. Phys. 21, 400 (1949).

    Google Scholar 

  2. L. Landau awd R. Peierls,Z. Phys. 62, 188 (1930);69, 56 (1931).

    Google Scholar 

  3. W. Pauli,Collected Scientific Papers, R. Kronig and V. F. Weisskopf, eds. (Interscience, New York, 1964), Vol. 2, p. 608.

    Google Scholar 

  4. M. H. L. Pryee,Proc. R. Soc. 195A, 62 (1948).

    Google Scholar 

  5. A. S. Wightman,Rev. Mod. Phys. 34, 845 (1962).

    Google Scholar 

  6. H. Bacry,Lecture Notes in Physics, Vol. 308 (Springer, Berlin. 1988).

    Google Scholar 

  7. E. R. Pike and S. Sarkarv inFrontiers in Quantum Optics. E. R. Pike and S. Sarkar, eds. (Hilger, Bristol, 1986).

    Google Scholar 

  8. D. Rosewarne and S. Sarkar,Quantum Opt. 4, 405 (1992).

    Google Scholar 

  9. A. J. Kalnay, inProblems in the Foundations of Physics. Mario Bunge, ed. (Springer, Berlin, 1971).

    Google Scholar 

  10. D. Han, Y. S. Kim and Marilyn E. Noz,Phys. Rev. A 35, 1682 (1987).

    Google Scholar 

  11. Henri Bacry,J. Phys: Math. Gen. 26 5413. (1993).

    Google Scholar 

  12. Y. S. Kim and E. P. Wigner,Phys. Rev. A. 36, 1293 (1987).

    Google Scholar 

  13. G. W. Mackey,Unitary Group Representations in Physics, Probability and Number Theory (Addison-Wesley, New York, 1989).

    Google Scholar 

  14. C. K. Hong and L. Mandel,Phys. Rev. Lett. 56, 58 (1986).

    Google Scholar 

  15. E. Wigner,Ann. Math. 40, 149 (1939).

    Google Scholar 

  16. E. Wigner,Nuovo Cimento 3, 517 (1956).

    Google Scholar 

  17. V. Bargmann and E. P. Wigner,Proc. Natl. Acad. Sci. 34, 211 (1948).

    Google Scholar 

  18. D. Lurié,Particles and Fields (Interscience, New York, 1968).

    Google Scholar 

  19. S. Twareque Ali,Riv. Nuovo Gimento 8, 1 (1985).

    Google Scholar 

  20. For a discussion in the context of massive particles, see S. N. M. Ruijsenaars,Ann. Phys. 137, 33 (1981).

    Google Scholar 

  21. S. N. Gupta,Proc. Phys. Soc. 63, 681 (1950).

    Google Scholar 

  22. K. Bleuler,Helv. Phys. Acta. 23, 567 (1950).

    Google Scholar 

  23. S. Weinberg,Phys. Rev. B 138, 988 (1965):Phys. Rev. B 134, 882 (1964).

    Google Scholar 

  24. D. Han, Y. S. Kim and D. Son,Am. J. Phys. 54, 818 (1986.

    Google Scholar 

  25. D. Han, Y. S. Kim and D. Son,Phys. Rev. D 26, 3717 (1982).

    Google Scholar 

  26. D. Han and Y. S. Kim,Am. J. Phys. 49, 348 (1981).

    Google Scholar 

  27. N. Shnerb and L. P. Horwitz,J. Math. Phys. 35, 1658 (1994).

    Google Scholar 

  28. D. Han, Y. S. Kim and D. Son,Phys. Rev. D. 3, 328, (1985).

    Google Scholar 

  29. Chr. MØller,Commun. Dublin Inst. Adv. Studies A 5, (1949); also A. Papapeltou,Acad. Athens 14, 540 (1939).

  30. D. G. Currie, T. F. Jordan, and E. C. G. Sudershan,Rev. Mod. Phys. 35, 350 (1963).

    Google Scholar 

  31. W. O. Amrein,Helv. Phys. Acta 42, 149 (1969).

    Google Scholar 

  32. Gordon N. Fleming,Phys. Rev. B 139, 963 (1965):J. Math. Phys. 7, 1959 (1966).

    Google Scholar 

  33. S. C. McDonald,J. Math. Phys. 11, 1558 (1970).

    Google Scholar 

  34. D. P. L. Castrigiano and U. Mutze,Phys Rev. D 26 3499 (1982).

    Google Scholar 

  35. A. A. Broyles,Phys. Rev. D 1, 979 (1970).

    Google Scholar 

  36. Joseph E. Johnson,Phys. Rev. D 3, 1735 (1971).

    Google Scholar 

  37. Where the detector can be a quantum system, and the measurement theory is unitary.

  38. A. Einstein,Ann. Phys. 132, 17 (1905); English translation by A. B. Arons and M. B. Peppard.Am. J. Phys. 367, 33 (1965).

    Google Scholar 

  39. Richard P. Feynman, Robert B. Leighton, and Mathew Sands.The Feynman Lectures on Physics, Vol. III (1965). For experiments that involve the photon, see. e.g., B. C. Sanders and G. J. Milburn,Phys. Rev. A 39, 694 (1989); Thomas J. Herzog, Paul G. Kwiat, Harald Weinfurter, and Anton Zeilinger,Phys. Rev. Lett. 75, 3034 (1995).

  40. Assuming for the purpose of discussion that such a basis exists.

  41. H. D. Zeh,Phys. Lett. A 172, 189 (1993).

    Google Scholar 

  42. Alternatively, for example, the system is localized in a volumeS, a Borel subset of a spacelike hyperplaneσ in Minkowski space.1341.

  43. D. Han, Y. S. Kim, Marilyn E. Noz, and D. Son,Am. J. Phys. 52, 1037 (1984).

    Google Scholar 

  44. D. Han, Y. S. Kim, and D. Son,Phys Lett. B 131, 327 (1983).

    Google Scholar 

  45. While the states χμL 2(V +) are invariant with respect to the transformations (42) required for localization, the change of basis (32) ensures the correct form of the scalar product for localized states.

  46. Roy J. Glauber,Phys. Rev. 131, 2766 (1963); Rodney London,The Quantum Theory of Light (Clarendon, Oxford, 1973).

    Google Scholar 

  47. J. M. Jauch and C. Piron,Helv. Phys. Acta 40, 559 (1967).

    Google Scholar 

  48. P. A. M. Dirac,The Principles of Quantum Mechanics (Clarendon, Oxford, 1962), §22.

    Google Scholar 

  49. L. Fonda and G. C. Ghirardi,Nuovo Cimento 56A, 1094 (1968).

    Google Scholar 

  50. L. Mandel,Phys. Rev. 144, 1071 (1966).

    Google Scholar 

  51. W. Greiner,Relativistic Quantum Mechanics (Springer, Heidelberg, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingall, J.E.M. The Newton-Wigner and Wightman localization of the photon. Found Phys 26, 1003–1031 (1996). https://doi.org/10.1007/BF02061401

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02061401

Keywords

Navigation