Skip to main content
Log in

Direct product and decomposition of certain physically important algebras

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

I consider the direct product algebra formed from two isomorphic Clifford algebras. More specifically, for an element x in each of the two component algebras I consider elements in the direct product space with the form x ⊗ x. I show how this construction can be used to model the algebraic structure of particular vector spaces with metric, to describe the relationship between wavefunction and observable in examples from quantum mechanics, and to express the relationship between the electromagnetic field tensor and the stress-energy tensor in electromagnetism. To enable this analysis I introduce a particular decomposition of the direct product algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Riesz,Clifford Numbers and Spinors (The Institute for Fluid Dynamics and Applied Mathematics, Lecture Series 38) (Univeristy of Maryland, University Park, 1958); reprinted as facsimile by Kluwer Academic, 1993, E. F. Bolinder and P. Lounesto, eds.

    Google Scholar 

  2. I. M. Benn and R. W. Tucker,An Introduction to Spinors and Geometry with Applications in Physics (Adam Hilger, London 1988).

    Google Scholar 

  3. R. Coquereaux, “Spinors, reflections and Clifford algebras: a review,” in A. Trautman and G. Furlan, eds.,Spinors in Physics and Geometry (World Scientific, Singapore, 1986), p. 135.

    Google Scholar 

  4. D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966).

    Google Scholar 

  5. K. R. Greider, “A unifying Clifford algebra formalism for relativistic fields,”Found. Phys. 14(6), 467 (1984).

    Google Scholar 

  6. N. Salingaros, “The relationship between finite groups and Clifford algebras,”J. Math. Phys. 25(4), 738 (1984).

    Google Scholar 

  7. P. Lounesto, “Clifford algebras, relativity, and quantum mechanics,” in P. S. Letelier and W. A. Rodrigues, Jr., eds.,Gravitation: The Spacetime Structure (World Scientific, Singapore, 1993), p. 50.

    Google Scholar 

  8. P. Lounesto, “Clifford algebras and Hestenes spinors,”Found. Phys. 23(9), 1203 (1993).

    Google Scholar 

  9. D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,”J. Math. Phys. 16(3), 556 (1975).

    Google Scholar 

  10. D. Hestenes, “Local observables in the Dirac theory,”J. Math. Phys. 14(7), 893 (1973).

    Google Scholar 

  11. C. J. L. Doran, A. N. Lasenby, and S. F. Gull, “States and operators in the spacetime algebra,”Found. Phys. 23(9), 1239 (1993).

    Google Scholar 

  12. V. L. Figueiredo, E. Capelas de Oliveira, and W. A. Rodrigues, Jr., “Covariant, algebraic, and operator spinors,”Int. J. Theor. Phys. 29(4), 371 (1990).

    Google Scholar 

  13. For a standard treatment of this problem, see, e.g., E. Merzbacher,Quantum Mechanics, 2nd edn. (J. Wiley, New York, 1970), pp. 276–293.

    Google Scholar 

  14. A. Maia, Jr., E. Recami, W. A. Rodrigues, Jr., and M. A. F. Rosa, “Magnetic monopoles without string in the Kahler-Clifford algebra bundle: a geometrical interpretation,”J. Math. Phys. 31(2), 502 (1990).

    Google Scholar 

  15. W. A. Rodrigues, Jr., E. Recami, A. Maia, Jr., and M. A. F. Rosa, “The classical problem of the charge and pole motion. A satisfactory formalism by Clifford algebras,”Phys. Lett. B 220(1, 2), 195 (1989).

    Google Scholar 

  16. L. P. Landau and E. M. Lifshitz,The Classical Theory of Fields, 4th revised English edn. (Pergamon, Oxford, 1975), p. 80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R.W. Direct product and decomposition of certain physically important algebras. Found Phys 26, 197–222 (1996). https://doi.org/10.1007/BF02058085

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02058085

Keywords

Navigation