Journal of Chemical Ecology

, Volume 21, Issue 5, pp 601–626

Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus


  • Kier D. Klepzig
    • Department of Plant PathologyUniversity of Wisconsin-Madison
    • Department of EntomologyUniversity of Wisconsin-Madison
  • Eric L. Kruger
    • Department of ForestryUniversity of Wisconsin-Madison
  • Eugene B. Smalley
    • Department of Plant PathologyUniversity of Wisconsin-Madison
  • Kenneth F. Raffa
    • Department of EntomologyUniversity of Wisconsin-Madison

DOI: 10.1007/BF02033704

Cite this article as:
Klepzig, K.D., Kruger, E.L., Smalley, E.B. et al. J Chem Ecol (1995) 21: 601. doi:10.1007/BF02033704


This study characterized the chemical response of healthy red pine to artificial inoculation with the bark beetle-vectored fungusLeptographium terebrantis. In addition, we sought to determine whether stress altered this induced response and to understand the implications of these interactions to the study of decline diseases. Twenty-five-year-old trees responded to mechanical wounding or inoculation withL. terebrantis by producing resinous reaction lesions in the phloem. Aseptically wounded and wound-inoculated phloem contained higher concentrations of phenolics than did constitutive tissue. Trees inoculated withL. terebrantis also contained higher concentrations of six monoterpenes,α-pinene,β-pinene, 3-carene, limonene, camphene, and myrcene, and higher total monoterpenes than did trees that were mechanically wounded or left unwounded. Concentrations of these monoterpenes increased with time after inoculation. Total phenolic concentrations in unwounded stem tissue did not differ between healthy and root-diseased trees. Likewise, constitutive monoterpene concentrations in stem phloem were similar between healthy and root-diseased trees. However, when stem phloem tissue was challenged with fungal inoculations, reaction tissue from root-diseased trees contained lower concentrations ofα-pinene, the predominant monoterpene in red pine, than did reaction tissue from healthy trees. Seedlings stressed by exposure to low light levels exhibited less extensive induced chemical changes when challenge inoculated withL. terebrantis than did seedlings growing under higher light. Stem phloem tissue in these seedlings contained lower concentrations ofα-pinene than did nonstressed seedlings also challenge inoculated withL. terebrantis. It is hypothesized that monoterpenes and phenolics play a role in the defensive response of red pine against insect-fungal attack, that stress may predispose red pine to attack by insect-fungal complexes, and that such interactions are involved in red pine decline disease. Implications to plant defense theory and interactions among multiple stress agents in forest decline are discussed.

Key Words

Monoterpenephenolicsα-pineneβ-pinenered pinebark beetlesLeptographiumIpsHylastesdefensestressdeclinegrowth-differentiation balance

Copyright information

© Plenum Publishing Corporation 1995