Skip to main content
Log in

The physical state space of quantum electrodynamics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Starting from the fact that electrically charged particles are massive, we derive a criterion which characterizes the state space of quantum electrodynamics. This criterion clarifies the special role of the electric charge amongst the uncountably many superselection rules in quantum electrodynamics and provides a basis for a general analysis of the infrared problem. Within this framework we establish the existence of asymptotic electromagnetic fields in all charge-sectors, find a general characterization of infra-particles and introduce a notion of asymptotic completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jauch, J.M., Rohrlich, F.: The theory of photons and electrons. Berlin, Heidelberg, New York: Springer 1976

    Book  Google Scholar 

  2. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I. Commun. Math. Phys.23, 199 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  3. Strocchi, F., Wightman, A.S.: Proof of the charge superselection rule in local relativistic quantum field theory. J. Math. Phys.15, 2198 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  4. Fröhlich, J., Morchio, G., Strocchi, F.: Infrared problem and spontaneous breaking of the Lorentz group in QED. Phys. Lett.89B, 61 (1979)

    Article  ADS  Google Scholar 

  5. Symanzik, K.: Lectures on Lagrangian quantum field theory. DESYT-71

  6. Haag, R., Kastler, D.: An algebraic approach to field theory. J. Math. Phys.5, 848 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Borchers, H.J., Buchholz, D.: To be published. For a sketch of the proof see [17]

  8. Bisognano, J.J., Wichmann, E.: On the duality condition for a hermitean scalar field. J. Math. Phys.16, 985 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Haag, R.: Lille Conference 1957 «Les problèmes mathématiques de la théorie quantique des champs». Paris: Editions du CNRS 1959

    Google Scholar 

  10. Borchers, H.J.: Energy and momentum as observables in quantum field theory. Commun. Math. Phys.2, 49 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg, New York: Springer 1971

    Book  Google Scholar 

  12. Buchholz, D.: Collision theory for massless Bosons. Commun. Math. Phys.52, 147 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  13. Borchers, H.J.: A remark on a theorem of B. Misra. Commun. Math. Phys.4, 315 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Borchers, H.J.: On the converse of the Reeh-Schlieder theorem. Commun. Math. Phys.10, 269 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Borchers, H.J.: On groups of automorphisms with semi-bounded spectrum. Paris: Editions du CNRS No. 181, 1970

  16. Sadowski, P., Woronowicz, S.L.: Total sets in quantum field theory. Rep. Math. Phys.2, 113 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys.84, 1–54 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kraus, K., Polley, L., Reents, G.: Models for infrared dynamics. I. Classical currents. Ann. Inst. H. Poincaré26, 109 (1977)

    ADS  MathSciNet  Google Scholar 

  19. Schroer, B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Physik11, 1 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  20. Araki, H., Haag, R.: Collision cross sections in terms of local observables. Commun. Math. Phys.4, 77 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  21. Buchholz, D.: In: “Proceedings of the international conference on operator algebras, ideals and their applications in theoretical physics, Leipzig 1977”. Leipzig: Teubner 1978

    Google Scholar 

  22. Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless scalar Bosons. Ann. Inst. H. Poincaré19, 1 (1973)

    MathSciNet  MATH  Google Scholar 

  23. Fröhlich, J., Morchio, G., Strocchi, F.: Charged sectors and scattering states in quantum electrodynamics. Ann. Phys.119, 241 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  24. Roepstorff, G.: Coherent photon states and spectral condition. Commun. Math. Phys.19, 301 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Gervais, J.L., Zwanziger, D.: Derivation from first principles of the infrared structure of quantum electrodynamics. Phys. Lett.94B, 389 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Jost

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholz, D. The physical state space of quantum electrodynamics. Commun.Math. Phys. 85, 49–71 (1982). https://doi.org/10.1007/BF02029133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02029133

Keywords

Navigation