Skip to main content
Log in

Dynamic DSC, SAXS and WAXS on homogeneous ethylene-propylene and ethylene-octene copolymers with high comonomer contents

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Ethylene-propylene (EP) and ethylene-octene (EO) copolymers polymerized with the aid of homogeneous vanadium and metallocene catalysts were compared by DSC and time-resolved simultaneous SAXS-WAXS-DSC at scanning rates of 10 and 20°C min−1 using synchrotron radiation. An EP copolymer with a density of 896 kg m−3 (about 89 mol % ethylene) after compression moulding gave orthorhombic WAXS reflections. The crystallinity as a function of temperature [w c (T)] calculated from these reflections using the two-phase model was in good agreement withw c (T) calculated fromc p measurements using DSC. Thec p measurements also enabled calculation of the baselinec p and the excessc p. The SAXS measurements revealed a strong change in the long period in cooling and in heating. The SAXS invariant as a function of temperature showed a maximum in both cooling and heating, which could be explained from the opposing influences of the crystallinity and the electron density difference between the two phases. Two EO copolymers with densities of about 871 kg m−3 (about 87 mol% ethylene) no longer showed any clear WAXS reflections, although DSC and SAXS measurements showed that these copolymers did crystallize. The similarity between the results led to the conclusion that the copolymers, though based on different catalyst systems — vanadium and metallocene — did not have strongly different sets of propagation probabilities of chain growth during polymerization. On the basis of a Monte Carlo simulation model of crystallization and morphology, based on detailed knowledge of the microchain structure, the difference between WAXS on the one hand and DSC and SAXS on the other could be explained as being due to loosely packed crystallized ethylene sequences in clusters. These do cause the density and the electron density of the cluster to increase (which is measurable by SAXS) and the enthalpy to decrease (which is measurable by DSC) but the clusters are too small and/or too imperfect to give constructive interference in the case of WAXS. Of an EP copolymer with an even lower ethylene content (about 69 mol %), the crystallization and melting processes could still be readily measured by DSC and SAXS, which proves that these techniques are eminently suitable for investigating the crystallization and melting behaviour of the copolymers studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. B. F. Mathot, Ch. 9: ‘The Crystallization and Melting Region’ in: ‘Calorimetry and Thermal Analysis of Polymers’, V.B.F. Mathot (Ed.), Hanser Publishers, München 1994, p. 231.

    Google Scholar 

  2. V. B. F. Mathot, ‘Crystallization and Melting of Linear, Branched and Copolymerized Polyethylenes as Revealed by Fractionation Methods and DSC’ in: ‘New Advances in Polyolefins’, T. C. Chung (Ed.), Plenum Press, 1994, p. 121.

  3. R. K. Bayer, Colloid & Polymer Sci., 269 (1991) 421; 270 (1992) 331; 272 (1993) 910.

    Google Scholar 

  4. H. G. Kilian, in: ‘Thermal Analysis and Calorimetry in Polymer Physics’, V. B. F. Mathot (Ed.), Special issue Thermochimica Acta, 238 (1994) 113.

  5. R.G. Alamo and L. Mandelkern, in: ‘Thermal Analysis and Calorimetry in Polymer Physics’, V. B. F Mathot (Ed.), Special issue Thermochimica Acta, 238 (1994) 155.

  6. B. Wunderlich, ‘Macromolecular Physics, Vol. 3: Crystal Melting’; Academic Press, New York 1980.

    Google Scholar 

  7. S.-D. Clas, K. E. McFaddin, K. E. Russell, M. V. Scammel-Bullock and I. R. Peat, J. Polym. Sci.: Part A: Polym. Chem., 25 (1987) 3105.

    Article  Google Scholar 

  8. S. Hosoda, Polym. J., 20 (1988) 383.

    Article  Google Scholar 

  9. G. Bodor, H. J. Dalcomo and O. Schröter, Colloid & Polymer Sci., 267 (1989) 480.

    Google Scholar 

  10. C. G. Vonk and H. Reynaers, Polym. Commun., 31 (1990) 190.

    Google Scholar 

  11. P. J. Flory, J. Chem. Phys., 15 (1947) 684.

    Article  Google Scholar 

  12. P. J. Flory, Trans. Faraday Soc., 51 (1955) 848.

    Article  Google Scholar 

  13. P. J. Flory, and L. Mandelkern, J. Polym. Sci., 21 (1956) 345.

    Article  Google Scholar 

  14. K. Casey, C. T. Elston and M. K. Phibbs, Polym. Letters, 2 (1964) 1053.

    Article  Google Scholar 

  15. I. J. Bastien, R. W. Ford and H. D. Mak, Polym. Letters, 4 (1966) 147.

    Article  Google Scholar 

  16. C. T. Elston, Can. Pat. No. 984,213, 1967.

  17. K. K. Dohrer, L. G. Hazlitt and N. F. Whiteman, J. Plast. Film Sheeting, 4(3) (1988) 214.

    Google Scholar 

  18. H. Sinn and W. Kaminsky, Angewandte Chemie, International Edition, Engl., 19 (1980) 390.

    Google Scholar 

  19. C. S. Speed, SPE Polyolefins, VII (1991) 46.

    Google Scholar 

  20. K. W. Swogger, Proceedings of the 1992 Specialty Polyolefins Conference, Schotland Business Research, Sept., (1992) 157.

  21. B. C. Childress, Worldwide Metallocene Conference MetCon '94, Houston, USA, 1994.

  22. L. Woo, M. T. K. Ling and S. P. Westphal, in: Proceedings of the Am. Chem. Soc., Div. Polym. Mat.: Sci. and Eng., 71, Fall Meeting, Washington 1994, p. 611.

  23. Y-C. Hwang, S. Chum, R. Guerra and K. Sehanobish, Antec 94 SPE Conference Proceedings, Vol III (1994) 3414.

    Google Scholar 

  24. B. Wunderlich: ‘Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, Defects’, Academic Press, New York 1973.

    Google Scholar 

  25. B. Wunderlich ‘Macromolecular Physics, Vol. 2: Crystal Nucleation, Growth, Annealing’; Academic Press, New York 1976.

    Google Scholar 

  26. ‘Calorimetry and Thermal Analysis of Polymers’, V. B. F. Mathot (Ed.); Hanser Publishers, München 1994.

    Google Scholar 

  27. V. B. F. Mathot, M. F. J. Pijpers, R. L. Scherrenberg and W. Bras, in: Proceedings of the 23rd NATAS Conference; J. B. Enns (Ed.), Toronto 1994, p. 150; V. B. F. Mathot, R. L. Scherrenberg, M. F. J. Pijpers and W. Bras, in: Polym. Prepr. of the Am. Chem. Soc., Div. Polym. Chem., 36(1), ACS Meeting ‘Advances in Crystalline Polymers’, California Meeting, Anaheim 1995, p. 302.

  28. W. Bras, G. E. Derbyshire, A. J. Ryan, G. R. Mant, A. Felton, R. A. Lewis, C. J. Hall and G. N. Greaves, Nucl. Instrum. Meth. Phys. Res. A, 326 (1993) 587.

    Google Scholar 

  29. W. Bras, G. E. Derbyshire, S. M. Clark, A. J. Ryan and J. Cooke, submitted to the Journal of Applied Crystallography.

  30. D. C. McFaddin, K. E. Russell, Gang Wu and R. D. Heyding, J. Polym. Sci.: Part B: Polym. Phys., 31 (1993) 175.

    Article  Google Scholar 

  31. C. G. Vonk, J. Appl. Cryst., 6 (1973) 148.

    Article  Google Scholar 

  32. V. Mathot, in: ‘Polycon '84 LLDPE’, The Plastics and Rubber Institute, London 1984, p. 1; V. B. F. Mathot, H. M. Schoffeleers, A. M. G. Brands and M. F. J. Pijpers, in: ‘Morphology of Polymers’, B. Sedlácek (Ed.), Walter de Gruyter & Co., Berlin-New York 1986, p. 363.

    Google Scholar 

  33. V. B. F. Mathot and M. F. J. Pijpers, Polymer Bulletin, 11 (1984) 297.

    Article  Google Scholar 

  34. V. Mathot, T. Pijpers and W. Bunge, in: Polym. Prepr. of the Am. Chem. Soc., Div. Polym. Chem., ACS Meeting ‘Recent Advances in Polyolefin Polymers’, 67, Fall Meeting, Washington 1992, p. 143.

  35. V. B. F. Mathot and M. F. J. Pijpers, J. Appl. Polym. Sci., 39(4) (1990) 979.

    Article  Google Scholar 

  36. V. Mathot, M. Pijpers, J. Beulen, R. Graff and G. van der Velden, in: ‘Proceedings of the Second European Symposium on Thermal Analysis 1981 (ESTA2)’, D. Dollimore (Ed.), Heyden, London 1981, p. 264.

    Google Scholar 

  37. B. K. Hunter, K. E. Russell, M. V. Scammell and S. L. Thompson, J. Polym. Sci.: Polym. Chem. Ed., 22 (1984) 1383.

    Article  Google Scholar 

  38. Th. G. Scholte, N. L. J. Meijerink, H. M. Schoffeleers and A. M. G. Brands, J. Appl. Polym. Sci., 29 (1984) 3763.

    Article  Google Scholar 

  39. K. Murata and S. Kobayashi, Kobunshi Kagaku, 26 (1969) 536.

    Google Scholar 

  40. J. M. Barrales-Rienda and J. M. G. Fatou, Polymer, 13 (1972) 407.

    Article  Google Scholar 

  41. J.-H. Hser and S. H. Carr, Polym. Eng. Sci., 19 (1979) 436.

    Article  Google Scholar 

  42. V. B. F. Mathot and M. F. J. Pijpers, Polymer Bulletin, 11 (1984) 297.

    Article  Google Scholar 

  43. Magill, J. H., in: ‘Polymer Handbook’ 3rd ed., J. Brandrup, E.H. Immergut (Eds.), Wiley, 1989, p. VI/279.

  44. R. G. Alamo, E. K. M. Chan, L. Mandelkern and I. G. Voigt-Martin, Macromolecules, 25(24) (1992) 6381.

    Article  Google Scholar 

  45. R. G. Alamo, B. D. Viers and L. Mandelkern, Macromolecules, 26 (1993) 5740.

    Article  Google Scholar 

  46. V. B. F. Mathot, in: ‘Crystallization of Polymers’, M. Dosière (Ed.), NATO ASI-C Series ‘Mathematical and Physical Sciences’, 1993, p. 102.

  47. R. A. C. Deblieck and V. B. F. Mathot, J. Mater. Sci. Lett., 7 (1988) 1276.

    Article  Google Scholar 

  48. F. M. Mirabella, Jr., S. P. Westphal, P. L. Fernando, E. A. Ford and J. G. Williams, J. Polym.'Sci.: Part B: Polym. Phys., 26 (1988) 1995.

    Article  Google Scholar 

  49. J. van Ruiten and J. W. Boode, Polymer, 33(12) (1992) 2549.

    Article  Google Scholar 

  50. R. B. Richards, J. Appl. Chem., 1 (1951) 370.

    Google Scholar 

  51. C. H. Baker and L. Mandelkern, Polymer, 7 (1966) 71.

    Article  Google Scholar 

  52. C. G. Vonk, in: ‘Proceedings Golden Jubilee Conference Polyethylenes’, The Plastics and Rubber Institute, Chameleon Press Ltd., London 1983, p. D2.1.

    Google Scholar 

  53. R. Alamo, R. Domszy and L. Mandelkern, J. Phys. Chem., 88 (1984) 6587.

    Article  Google Scholar 

  54. F. J. Baltá Calleja and C. G. Vonk: X-ray Scattering of Synthetic Polymers. Polymer Science Library 8, Elsevier, Amsterdam 1989.

    Google Scholar 

  55. C. G. Vonk and H. Reynaers, Polym. Commun., 31 (1990) 190.

    Google Scholar 

  56. C. G. Vonk, J. Polym. Sci.: Part C, 38 (1972) 429.

    Google Scholar 

  57. J. Martinez de Salazar and F.J. Baltá Calleja, J. Cryst. Growth, 48 (1979) 283.

    Google Scholar 

  58. C. France, P. J. Hendra, W. F. Maddams and H. A. Willis, Polymer, 28 (1987) 710.

    Article  Google Scholar 

  59. J. Martinez-Salazar, M. Sánchez Cuesta and F. J. Baltá Calleja, Colloid & Polymer Sci., 265 (1987) 239.

    Google Scholar 

  60. J. A. Parker, D. C. Bassett, R. H. Olley and P. Jaaskelainen, Polymer, 35(19) (1994) 4142.

    Article  Google Scholar 

  61. V. B. F. Mathot, Ch. C. M. Fabrie, G. P. J. M. Tiemersma-Thoone and G. P. M. van der Velden, in: ‘Proceedings Int. Rubber Conf. (IRC)’, Kyoto, October 15–18, 1985, p. 334.

  62. V. B. F. Mathot and Ch. C. M. Fabrie, J. Polym. Sci.: Part B: Polym. Phys., 28 (1990) 2487.

    Article  Google Scholar 

  63. V. B. F. Mathot, Ch. C. M. Fabrie, G. P. J. M. Tiemersma-Thoone and G. P. M. van der Velden, J. Polym. Sci.: Part B: Polym. Phys., 28 (1990) 2509.

    Article  Google Scholar 

  64. H. N. Cheng, Macromolecules, 17 (1984) 1950.

    Article  Google Scholar 

  65. H. N. Cheng and M. A. Bennett, Makromol. Chem., 188 (1987) 135.

    Article  Google Scholar 

  66. J. C. Randall, Rev. Macromol. Chem. Phys., C29(2 & 3) (1989) 201.

    Google Scholar 

  67. V. B. F. Mathot, G. P. J. M. Tiemersma-Thoone, G. Evens, J. Pijpers and J. Beulen, to be published.

  68. V. B. F. Mathot, Ch. C. M. Fabrie, G. P. J. M. Tiemersma-Thoone and G. P. M. van der Velden, to be published.

  69. V. B. F. Mathot, Polymer, 25 (1984) 579. Errata: Polymer, 27 (1986) 969.

    Article  Google Scholar 

  70. B. Wunderlich and G. Czornyj, Macromolecules, 10(5) (1977) 906.

    Article  Google Scholar 

  71. J. J. Maurer, Rubber Chem. Technol., 38 (1965) 979.

    Google Scholar 

  72. V. B. F. Mathot, Ch. 5: ‘Thermal Characterization of States of Matter’ in: ‘Calorimetry and Thermal Analysis of Polymers’, V. B. F. Mathot (Ed.); Hanser Publishers, München 1994, p. 105.

    Google Scholar 

  73. V. B. F. Mathot and M. F. J. Pijpers, J. Thermal Anal., 28 (1983) 349.

    Google Scholar 

  74. M. Dole and B. Wunderlich, J. Polym. Sci., 24 (1957) 139.

    Article  Google Scholar 

  75. V. B. F. Mathot and M.F.J. Pijpers, Thermochim. Acta, 151 (1989) 241.

    Article  Google Scholar 

  76. The ATHAS Data Bank 1980: U. Gaur, S.-F. Lau, H.-C. Shu, B. B. Wunderlich, A. Mehta, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (1981) 89, 119, 1001; 11 (1982) 313, 1065; 12 (1983) 29, 65, 91; Update: M. Varma-Nair and B. Wunderlich, J. Phys. Chem. Ref. Data, 20(2) (1991) 349; The Eight ATHAS Report — 1995.

    Google Scholar 

  77. B. Wunderlich: ‘Thermal Analysis’, Academic Press, Inc., San Diego 1990.

    Google Scholar 

  78. M. Alsleben, C. Schick and W. Mischok, Thermochim. Acta, 187 (1991) 261.

    Article  Google Scholar 

  79. P. P. A. Smit, Rheol. Acta, 5 (1966) 277.

    Google Scholar 

  80. F. R. Schwarzl, Rheol. Acta, 5 (1966) 270.

    Google Scholar 

  81. G. Kraus, Adv. Polym. Sci., 8 (1971) 155.

    Google Scholar 

  82. L. C. E. Struik, in: ‘Physical Aging in Amorphous Polymers and Other Materials’, Elsevier, Amsterdam 1978.

    Google Scholar 

  83. B. Wunderlich, in: “Thermal Characterization of Polymeric Materials”, E. A. Turi (Ed.), Academic Press, Inc., Orlando, Florida 1981, p. 92.

    Google Scholar 

  84. C. G. Vonk and A. P. Pijpers, J. Polym. Sci.: Polym. Phys. Ed., 23 (1985) 2517.

    Article  Google Scholar 

  85. S. Z. D. Cheng, M.-Y. Cao and B. Wunderlich, Macromolecules, 19 (1986) 1868.

    Article  Google Scholar 

  86. H. Suzuki, J. Grebowicz and B. Wunderlich, Brit. Polym. J., 17 (1986) 1.

    Google Scholar 

  87. S. Z. D. Cheng and B. Wunderlich, Macromolecules, 20 (1987) 1630.

    Article  Google Scholar 

  88. L. C. E. Struik, in ref. 82 and in a number of papers: Polymer, 28 (1987) 1521, 1534; Polymer, 30 (1989) 799, 815.

    Article  Google Scholar 

  89. S. Z. D. Cheng and B. Wunderlich, Thermochim. Acta, 134 (1988) 161.

    Article  Google Scholar 

  90. S. Z. D. Cheng, R. Pan and B. Wunderlich, Makromol. Chem., 189 (1988) 2443; S. Z. D. Cheng and B. Wunderlich, Thermochim. Acta, 134 (1988) 161; see also a number of papers by S. Z. D. Cheng and B. Wunderlich

    Article  Google Scholar 

  91. L. Mandelkern, R. G. Alamo and M. A. Kennedy, Macromolecules, 23 (1990) 4721.

    Article  Google Scholar 

  92. C. Schick and E. Donth, Physica Scripta, 43 (1991) 423.

    Google Scholar 

  93. P. Cebe and P. P. Huo, in: ‘Thermal Analysis and Calorimetry in Polymer Physics’, V.B.F. Mathot (Ed.), Special issue Thermochimica Acta, 238 (1994) 229.

  94. A. J. Ryan, W. Bras, G. R. Mant and G. E. Derbyshire, Polymer, 35(21) (1994) 4537.

    Article  Google Scholar 

  95. P. R. Swan, J. Polym. Sci., 56 (1962) 403.

    Article  Google Scholar 

  96. H. Wilski, Kunststoffe, 54 (1964) 10, 90.

    Google Scholar 

  97. M. Peeters: ‘Crystallization and Melting Behaviour of Homogeneous Copolymers of Ethene and 1-Octene’, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium 1995.

    Google Scholar 

  98. M. Hikosaka, Polymer, 28 (1987) 1257.

    Article  Google Scholar 

  99. M. Hikosaka, Polymer, 31 (1990) 458.

    Article  Google Scholar 

  100. R. L. Scherrenberg: ‘The Structural Aspects pf Suspension Poly Vinyl Chloride’, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium 1992.

    Google Scholar 

  101. R. L. Scherrenberg, Macromolecules, 26(16) (1993) 4118.

    Article  Google Scholar 

  102. D. C. Bassett: Principles of Polymer Morphology. Cambridge University Press, 1981; A. S. Vaughan and D. C. Bassett, in: Comprehensive Polymer Science, Vol. 2: Polymer Properties, C. Booth and C. Price (Eds.), Pergamon Press, Oxford 1989, p. 415.

  103. I. G. Voigt-Martin, Adv. Polym. Sci., 67 (1985) 194.

    Google Scholar 

  104. A. Keller, in: ‘Integration of Fundamental Polymer Science and Technology’, L. A. Kleintjens and P. J. Lemstra (Eds.), Elsevier Applied Science Publishers Ltd, Essex, England 1986, p. 425.

    Google Scholar 

  105. M. Dosière, in: ‘Handbook of Polymer Science and Technology’, Vol. 2, N. P. Cheremisinoff (Ed.), Marcel Dekker, New York 1989, p. 367.

    Google Scholar 

  106. I. G. Voigt-Martin and L. Mandelkern, J. Polym. Sci.: Part B: Polym. Phys., 27 (1989) 967.

    Article  Google Scholar 

  107. J. van Ruiten, F. van Dieren and V. B. F. Mathot in: ‘Crystallization of Polymers’, M. Dosière (Ed.); NATO ASI-C Series Mathematical and Physical Sciences, 1993, p. 481.

  108. B. Wunderlich, J. Chem Phys., 29(6) (1958) 1395.

    Article  Google Scholar 

  109. P. J. Flory, J. Amer. Chem. Soc., 84 (1962) 2857.

    Article  Google Scholar 

  110. C. G. Vonk, in: ‘Integration of Fundamental Polymer Science and Technology’, L. A. Kleintjens and P. J. Lemstra (Eds.), Elsevier Applied Science Publishers Ltd, Essex, England 1986, p. 471.

    Google Scholar 

  111. P. Schouterden, G. Groeninckx, B. Van der Heyden and F. Jansen, Polymer, 28 (1987) 2099.

    Article  Google Scholar 

  112. S. A. Karoglanian and I. R. Harrison, Polym. Mater. Sci. Eng., 61 (1989) 748.

    Google Scholar 

  113. F. Defoor: ‘Molecular, Thermal and Morphological Characterization of Narrowly Branched Fractions of 1-Octene LLDPE’, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthday

The authors would like to thank Mr J. van den Bosch and the late Mr R. Graff for polymerizing the EP copolymers, Messrs G. Evens and J. Pijpers for providing the vanadium-based EO copolymer and Ms N. Verweij for providing the metallocene-based EO copolymer. Thanks are also due to DSM for giving their permission for publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathot, V.B.F., Scherrenberg, R.L., Pijpers, M.F.J. et al. Dynamic DSC, SAXS and WAXS on homogeneous ethylene-propylene and ethylene-octene copolymers with high comonomer contents. Journal of Thermal Analysis 46, 681–718 (1996). https://doi.org/10.1007/BF01983597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01983597

Keywords

Navigation