Journal of thermal analysis

, Volume 46, Issue 3, pp 681-718

First online:

Dynamic DSC, SAXS and WAXS on homogeneous ethylene-propylene and ethylene-octene copolymers with high comonomer contents

  • V. B. F. MathotAffiliated withDSM Research
  • , R. L. ScherrenbergAffiliated withDSM Research
  • , M. F. J. PijpersAffiliated withDSM Research
  • , W. BrasAffiliated with

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Ethylene-propylene (EP) and ethylene-octene (EO) copolymers polymerized with the aid of homogeneous vanadium and metallocene catalysts were compared by DSC and time-resolved simultaneous SAXS-WAXS-DSC at scanning rates of 10 and 20°C min−1 using synchrotron radiation. An EP copolymer with a density of 896 kg m−3 (about 89 mol % ethylene) after compression moulding gave orthorhombic WAXS reflections. The crystallinity as a function of temperature [w c (T)] calculated from these reflections using the two-phase model was in good agreement withw c (T) calculated fromc p measurements using DSC. Thec p measurements also enabled calculation of the baselinec p and the excessc p. The SAXS measurements revealed a strong change in the long period in cooling and in heating. The SAXS invariant as a function of temperature showed a maximum in both cooling and heating, which could be explained from the opposing influences of the crystallinity and the electron density difference between the two phases. Two EO copolymers with densities of about 871 kg m−3 (about 87 mol% ethylene) no longer showed any clear WAXS reflections, although DSC and SAXS measurements showed that these copolymers did crystallize. The similarity between the results led to the conclusion that the copolymers, though based on different catalyst systems — vanadium and metallocene — did not have strongly different sets of propagation probabilities of chain growth during polymerization. On the basis of a Monte Carlo simulation model of crystallization and morphology, based on detailed knowledge of the microchain structure, the difference between WAXS on the one hand and DSC and SAXS on the other could be explained as being due to loosely packed crystallized ethylene sequences in clusters. These do cause the density and the electron density of the cluster to increase (which is measurable by SAXS) and the enthalpy to decrease (which is measurable by DSC) but the clusters are too small and/or too imperfect to give constructive interference in the case of WAXS. Of an EP copolymer with an even lower ethylene content (about 69 mol %), the crystallization and melting processes could still be readily measured by DSC and SAXS, which proves that these techniques are eminently suitable for investigating the crystallization and melting behaviour of the copolymers studied.