Skip to main content
Log in

A redox cycling model for the action ofβ-adrenoceptor agonists

  • Full Papers
  • Published:
Experientia Aims and scope Submit manuscript

Summary

A cyclic redox mechanism for the action ofβ-adrenoceptor agonists is proposed. It has the following features: a)β-adrenoceptor agonists act by ‘reductive activation’ of theβ-adrenoceptor (R); b) the redox state of R is reciprocally coupled to the redox state of the guanine nucleotide binding protein (G); c) binding of GTP to G reverses the agonist-induced alteration of the redox states of R and G; d) according to a specific version of the model the activation process involves a disulfide-thiol interchange reaction which leads to a GTP-revertible cross-linking of R and G by a disulfide bond. The way in which desensitization events may interfere with the proposed redox cycle is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. André, C., Vauquelin, G., Severne, Y., De Backer, J. P., and Strosberg, A. D., Dual effect of N-ethylmaleimide on agonist-mediated conformational changes ofβ-adrenergic receptors. Biochem. Pharmac.31 (1982) 3657–3662.

    Article  Google Scholar 

  2. Birnbaumer, L., and Iyengar, R., Coupling of receptors to adenylate cyclases, in: Handbook of Experimental Pharmacology, vol. 58, part 1, pp. 153–183. Eds J. A. Nathanson and J. W. Kebabian, Springer Verlag, Berlin 1982.

    Google Scholar 

  3. Borg, D. C., Transient free radical forms of hormones: EPR spectra from catecholamines and adrenochrome. Proc. natn. Acad. Sci. USA53 (1965) 633–639.

    Article  CAS  Google Scholar 

  4. Bottari, S., Vauquelin, G., Durieu, O., Klutchko, C., and Strosberg, A. D., Theβ-adrenergic receptor of turkey erythrocyte membranes: conformational modification byβ-adrenergic agonists. Biochem. biophys. Res. Commun.86 (1979) 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  5. Boyer, J. L., García, A., Posadas, C., and García-Sáinz, J. A., Differential effect of pertussis toxin on the affinity state for agonists of renal α1- and β2-adrenoceptors. J. biol. Chem.259 (1984) 8076–8079.

    Article  CAS  PubMed  Google Scholar 

  6. Burget, G. E., and Visscher, M. B., Variations of the pH of the blood and the response of the vascular system to adrenalin. Am. J. Physiol.81 (1927) 113–123.

    Article  CAS  Google Scholar 

  7. Bylund, D. B., and U'Prichard, D. C., Characterization of α1- and α2-adrenergic receptors. Int. Rev. Neurobiol.24 (1983) 343–431.

    Article  CAS  PubMed  Google Scholar 

  8. Camilión de Hurtado, M. C., Argel, M. I., and Cingolani, H. E., Influence of acid-base alterations on myocardial sensitivity to catecholamines. Naunyn-Schmiedeberg's Arch. Pharmac.317 (1981) 219–224.

    Article  Google Scholar 

  9. Cassel, D., and Selinger, Z., Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. biophys. Acta452 (1976) 538–551.

    Article  CAS  PubMed  Google Scholar 

  10. Clark, R. B., Green, D. A., Rashidbaigi, A., and Ruoho, A., Effect of dithiothreitol on theβ-adrenergic receptor of S49 wild type and cyclymphoma cells: decreased affinity of the ligand-receptor interaction. J. cyclic Nucl. Protein Phosphoryl. Res.9 (1983) 203–220.

    CAS  Google Scholar 

  11. Collip, J. B., Reversal of depressor action of small doses of adrenalin. Am. J. Physiol.55 (1921) 450–454.

    Article  Google Scholar 

  12. Creese, I., Sibley, D. R., Hamblin, M. W., and Leff, S. E., The classification of dopamine receptors: relationship to radioligand binding. A. Rev. Neurosci.6 (1983) 43–71.

    Article  CAS  Google Scholar 

  13. Davies, A. O., Rapid desensitization and uncoupling of humanβ-adrenergic receptors in an in vitro model of lactic acidosis. J. clin. Endocr. Metab.59 (1984) 398–405.

    Article  CAS  PubMed  Google Scholar 

  14. De Lean, A., Stadel, J. M., and Lefkowitz, R. J., A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupledβ-adrenergic receptor. J. biol. Chem.255 (1980) 7108–7117.

    Article  PubMed  Google Scholar 

  15. Erdos, J. J., Vauquelin, G., Cech, S. Y., Broaddus, W. C., Jacobs, P. L., and Maguire, M. E., Magnesium transport: an independently regulatedβ-adrenergic response not mediated by cyclic AMP. Adv. cyclic Nucl. Res.14 (1981) 69–81.

    CAS  Google Scholar 

  16. Exton, J. H., Molecular mechanisms involved in α-adrenergic responses. TIPS3 (1982) 111–115.

    CAS  Google Scholar 

  17. Feigl, F., and Anger, V., Spot tests in organic analysis, 7th edn, pp. 639–640. Elsevier, Amsterdam 1966.

    Google Scholar 

  18. Goodhardt, M., Ferry, N., Geynet, P., and Hanoune, J., Hepatic α1-adrenergic receptors show agonist-sprcific regulation by guanine nucleotides. Loss of nucleotide effect after adrenalectomy. J. biol. Chem.257 (1982) 11577–11583.

    Article  CAS  PubMed  Google Scholar 

  19. Gozlan, H., Homburger, V., Lucas, M., Bockaert, J., and Michelot, R., Irreversible inactivation ofβ-adrenergic receptors of C6 glioma cells. Synthesis and study of a thiol derivative of propranolol. Biochimie62 (1980) 455–462.

    Article  CAS  PubMed  Google Scholar 

  20. Graham, D. G., Tiffany, S. M., Bell, Jr., W. R., and Gutknecht, W. F., Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds towards C 1300 neuroblastoma cells in vitro. Molec. Pharmac.14 (1978) 644–653.

    CAS  Google Scholar 

  21. Heidenreich, K. A., Weiland, G. A. and Molinoff, P. B., Effects of magnesium and N-ethylmaleimide on the binding of3H-hydroxybenzylisoproterenol toβ-adrenergic receptors. J. biol. Chem.257 (1982) 804–810.

    Article  CAS  PubMed  Google Scholar 

  22. Hirata, F., Strittmatter, W. J., and Axelrod, J.,β-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, andβ-adrenergic receptor-adenylate cyclase coupling. Proc. natn. Acad. Sci. USA76 (1979) 368–372.

    Article  CAS  Google Scholar 

  23. Howlett, A. C., van Arsdale, P. M., and Gilman, A. G., Efficiency of coupling between the beta adrenergic receptor and adenylate cyclase. Molec. Pharmac.14 (1978) 531–539.

    CAS  Google Scholar 

  24. Jacobsson, B., Vauquelin, G., Wesslau, C., Smith, U., and Strosberg, A. D., Distinction between two subpopulations of α1 receptors in human adipose cells. Eur. J. Biochem.114 (1981) 349–354.

    Article  CAS  PubMed  Google Scholar 

  25. Jensen, E. V., Sulfhydryl-disulfide interchange. Science130 (1959) 1319–1323.

    Article  CAS  PubMed  Google Scholar 

  26. Kalyanaraman, B., Felix, C. C., and Sealy, R. C., Electron spin resonance-spin stabilization of semiquinones produced during oxidation of epinephrine and its analogues. J. biol. Chem.259 (1984) 354–358.

    Article  CAS  PubMed  Google Scholar 

  27. Kalyanaraman, B., Felix, C. C., and Sealy, R. C., Peroxidatic oxidation of catecholamines. A kinetic electron spin resonance investigation using the spin stabilization approach. J. biol. Chem.259 (1984) 7584–7589.

    Article  CAS  PubMed  Google Scholar 

  28. Kalyanaraman, B., and Sealy, R. C., Electron spin resonance-spin stabilization in enzymatic systems: detection of semiquinones produced during peroxidatic oxidation of catechols and catecholamines. Biochem. biophys. Res. Commun.106 (1982) 1119–1125.

    Article  CAS  PubMed  Google Scholar 

  29. Kelleher, D. J., Pessin, J. E., Ruoho, A. E., and Johnson, G. L., Phorbol ester induces desensitization of adenylate cyclase and phosphorylation of theβ-adrenergic receptor in turkey erythrocytes. Proc. natn. Acad. Sci. USA81 (1984) 4316–4320.

    Article  CAS  Google Scholar 

  30. Korner, M., Gilon, C., and Schramm, M., Locking of hormone in theβ-adrenergic receptor by attack on a sulfhydryl in an associated component. J. biol. Chem.257 (1982) 3389–3396.

    Article  CAS  PubMed  Google Scholar 

  31. Lefkowitz, R. J., Caron, M. G., Michel, T., and Stadel, J. M., Mechanismus of hormone receptor-effector coupling: theβ-adrenergic receptor and adenylate cyclase. Fedn Proc.41 (1982) 2664–2670.

    CAS  Google Scholar 

  32. Levitzki, A., Activation and inhibition of adenylate cyclase by hormones: mechanistic aspects. TIPS3 (1982) 203–208.

    CAS  Google Scholar 

  33. Limbird, L. E., Activation and attenuation of adenylate cyclase. The role of GTP-binding proteins as macromolecular messengers in receptor-cyclase coupling. Biochem. J.195 (1981) 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lucas, M., Hanoune, J., and Bockaert, J., Chemical Modification of the beta adrenergic receptors coupled with adenylate cyclase by disulfide bridge-reducing agents. Molec. Pharmac.14 (1978) 227–236.

    CAS  Google Scholar 

  35. Lynch, C. J., Charest, R., Blackmore, P. F., and Exton, J. H., Studies on the hepatic α1 receptor. Modulation of guanine nucleotide effects by calcium, temperature, and age. J. biol. Chem.260 (1985) 1593–1600.

    Article  CAS  PubMed  Google Scholar 

  36. Maguire, M. E., and Erdos, J. J., Inhibition of magnesium uptake byβ-adrenergic agonists and prostaglandin E1 is not mediated by cyclic AMP. J. biol. Chem.255 (1980) 1030–1035.

    Article  CAS  PubMed  Google Scholar 

  37. Marsden, C. A., Application of electrochemical detection to neuropharmacology. TIPS4 (1983) 148–152.

    Google Scholar 

  38. Minneman, K. P., Pittman, R. N., and Molinoff, P. B.,β-Adrenergic receptor subtypes: properties, distribution, and regulation. A. Rev. Neurosci.4 (1981) 419–461.

    Article  CAS  Google Scholar 

  39. Mohell, N., Alpha1-adrenergic receptors in brown adipose tissue. Acta physiol. scand., suppl.530 (1984) 1–62.

    Google Scholar 

  40. Morgan, N. G., Blackmore, P. F., and Exton, J. H., Age-related changes in the control of hepatic cyclic AMP levels by α1- and β2-adrenergic receptors in male rats. J. biol. Chem.258 (1983) 5103–5109.

    Article  CAS  PubMed  Google Scholar 

  41. Mukherjee, C., and Lefkowitz, R. J., Regulation of beta adrenergic receptors in isolated frog erythrocyte plasma membranes. Molec. Pharmac.13 (1977) 291–303.

    CAS  Google Scholar 

  42. Mukherjee, S. P., and Mukherjee, C., Role of sulfhydryl oxidation in adipocyte plasma membrane surface in the response of adenylate cyclase to isoproterenol and glucagon. Biochim. biophys. Acta677 (1981) 339–349.

    Article  CAS  PubMed  Google Scholar 

  43. Nambi, P., Peters, J. R., Sibley, D. R., and Lefkowitz, R. J., Desensitization of the turkey erythrocyteβ-adrenergic receptor in a cell-free system. Evidence that multiple protein kinases can phosphorylate and desensitize the receptor. J. biol. Chem.260 (1985) 2165–2171.

    Article  CAS  PubMed  Google Scholar 

  44. Perkins, J. P., Harden, T. K., and Harper, J. F., Acute and chronic modulation of the responsiveness of receptor-associated adenylate cyclases, in: Handbook of Experimental Pharmacology, vol. 58, part 1, pp. 185–224. Eds J. A. Nathanson and J. W. Kebabian, Springer Verlag, Berlin 1982.

    Google Scholar 

  45. Plancherel, D., and van Zelewsky, A., Photon-triggered complex formation: radical complexes of o-benzosemiquinone, dopa, dopamine and adrenaline formed by electron-transfer reaction from excited tris (2,2′-bi-pyridyl)ruthenium (II). Helv. chim. Acta65 (1982) 1929–1940.

    Article  CAS  Google Scholar 

  46. Rao, P. S., and Hayon, E., Ionization constants and spectral characteristics of some semiquinone radicals in aqueous solution. J. phys. Chem.77 (1973) 2274–2276.

    Article  CAS  Google Scholar 

  47. Robillard, G. T., and Konings, W. N., A hypothesis for the role of dithiol-disulfide interchange in solute transport and energy-transducing processes. Eur. J. Biochem.127 (1982) 597–604.

    Article  CAS  PubMed  Google Scholar 

  48. Rodbell, M., The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature284 (1980) 17–22.

    Article  CAS  PubMed  Google Scholar 

  49. Ross, E. M., and Gilman, A. G., Biochemical properties of hormonesensitive adenylate cyclase. A. Rev. Biochem.49 (1980) 533–564.

    Article  CAS  Google Scholar 

  50. Salant, W., and Johnston, R. L., The response of the isolated frog heart to changes in hydrogen-ion concentration and adrenalin. J. Pharmac. exp. Ther.23 (1924) 373–383.

    CAS  Google Scholar 

  51. Schultz, G., Jakobs, K. H., and Hofmann, F., Wirkungsprinzipien von Hormonen und Neurotransmittern. Drug Res.30 (1980) 1981–1986.

    CAS  Google Scholar 

  52. Sibley, D. R., Peters, J. R., Nambi, P., Caron, M. G., and Lefkowitz, R. J., Desensitization of turkey eryothrocyte adenylate cyclase.β-Adrenergic receptor phosphorylation is correlated with attenuation of adenylate cyclase activity. J. biol. Chem.259 (1984) 9742–9749.

    Article  CAS  PubMed  Google Scholar 

  53. Smithies, O., Disulfide-bond cleavage and formation in proteins. Science150 (1965) 1595–1598.

    Article  CAS  PubMed  Google Scholar 

  54. Snavely, M. D., and Insel, P. A., Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex. Differential regulation of alpha1- and alpha2-adrenergic receptors by guanyl nucleotides and Na+. Molec. Pharmac.22 (1982) 532–546.

    CAS  Google Scholar 

  55. Spiegel, A. M., and Downs, Jr., R. W., Guanine nucleotides: key regulators of hormone receptor — adenylate cyclase interaction. Endocr. Rev.2 (1981) 275–305.

    Article  CAS  PubMed  Google Scholar 

  56. Stadel, J. M., and Lefkowitz, R. J., Multiple reactive sulfhydryl groups modulate the function of adenylate cyclase coupled beta-adrenergic receptors. Molec. Pharmac.16 (1979) 709–718.

    CAS  Google Scholar 

  57. Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. F., Caron, M. G., and Lefkowitz, R. J., Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of theβ-adrenergic receptor. Proc. natn. Acad. Sci. USA80 (1983) 3173–3177.

    Article  CAS  Google Scholar 

  58. Strauss, W. L., Sulfhydryl groups and disulfide bonds: modification of amino acid residues in studies of receptor structure and function, in: Receptor Biochemistry and Methodology, vol. 1: Membranes, Detergents, and Receptor Solubilization, pp. 85–97. Eds. J. C. Venter and L. C. Harrison. Alan R. Liss, Inc., New York 1984.

    Google Scholar 

  59. Sutherland, E. W., Robinson, G. A., and Butcher, R. W., Some aspects of the biological role of adenosine 3′,5′-monophosphate (cyclic AMP). Circulation37 (1968) 279–306.

    Article  CAS  Google Scholar 

  60. Swillens, S., and Dumont, J. E., A unifying model of current concepts and data on adenylate cyclase activation byβ-adrenergic agonists. Life Sci.27 (1980) 1013–1028.

    Article  CAS  PubMed  Google Scholar 

  61. Szajewski, R. P., and Whitesides, G. M., Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J. Am. chem. Soc.102 (1980) 2011–2026.

    Article  CAS  Google Scholar 

  62. Torchinskii, Y. M., Sulfhydryl and disulfide groups of proteins, p. 12. Consultants Bureau, New York 1974.

    Book  Google Scholar 

  63. Vauquelin, G., Bottari, S., André, C., Jacobsson, B., and Strosberg, A. D., Interaction betweenβ-adrenergic receptors and guanine nucleotide sites in turkey erythrocyte membranes. Proc. natn. Acad. Sci. USA77 (1980) 3801–3805.

    Article  CAS  Google Scholar 

  64. Vauquelin, G., Bottari, S., Kanarek, L., and Strosberg, A. D., Evidence for essential disulfide bonds in β1-adrenergic receptors of turkey erythrocyte membranes. Inactivation by dithiothreitol. J. biol. Chem.254 (1979) 4462–4469.

    Article  CAS  PubMed  Google Scholar 

  65. Vauquelin, G., Bottari, S., and Strosberg, A. D., Inactivation ofβ-adrenergic receptors by N-ethylmaleimide: permissive role ofβ-adrenergic agents in relation to adenylate cyclase activation. Molec. Pharmac.17 (1980) 163–171.

    CAS  Google Scholar 

  66. Vauquelin, G., Cech, S. Y., André, C., Strosberg, A. D., and Maguire, M. E., Distinctions inβ-adrenergic receptor interactions with the magnesium-guanine nucleotide coupling proteins in turkey erythrocyte and S49 lymphoma membranes. J. cyclic Nucl. Res.8 (1982) 149–162.

    CAS  Google Scholar 

  67. Vauquelin, G., and Maguire, M. E., Inactivation ofβ-adrenergic receptors by N-ethylmaleimide in S49 lymphoma cells. Agonist induction of functional receptor heterogeneity. Molec. Pharmac.18 (1980) 362–369.

    CAS  Google Scholar 

  68. Wessels, M. R., Mullikin, D., and Lefkowitz, R. J., Selective alteration in high affinity agonist binding: a mechanism of beta-adrenergic receptor desensitization. Molec. Pharmac.16 (1979) 10–20.

    CAS  Google Scholar 

  69. Wood, C. L., Arnett, C. D., Clarke, W. R., Tsai, B. S., and Lefkowitz, R. J., Subclassification of alpha-adrenergic receptors by direct binding studies. Biochem. Pharmac.28 (1979) 1277–1282.

    Article  CAS  Google Scholar 

  70. Wright, M., and Drummond, G. I., Inactivation of theβ-adrenergic receptor in skeletal muscle by dithiols. Biochem. Pharmac.32 (1983) 509–515.

    Article  CAS  Google Scholar 

  71. Yoshioka, M., Kirino, Y., Tamura, Z., and Kwan, T., Semiquinone radicals generated from catecholamines by ultraviolet irradiation. Chem. pharm. Bull.25 (1977) 75–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgments. The author thanks Dr D. Walz for a helpful discussion, Drs L. Birnbaumer and G. T. Robillard for critical reading of the manuscript and the Deutsche Forschungsgemeinschaft for financial support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühl, P.W. A redox cycling model for the action ofβ-adrenoceptor agonists. Experientia 41, 1118–1122 (1985). https://doi.org/10.1007/BF01951689

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01951689

Key words

Navigation