[1]

Peter Aczel. An introduction to inductive definitions. In J. Barwise, editor,*Handbook of Mathematical Logic*, pages 739-, North-Holland Publishing Company, 1977.

[2]

R. L. Constable and et. al.*Implementing Mathematics with the NuPRL Proof Development System*. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[3]

Per Martin-Löf. Constructive mathematics and computer programming. In*Logic, Methodology and Philosophy of Science, VI, 1979*, pages 153–175, North-Holland, 1982.

[4]

Per Martin-Löf.*Intuitionistic Type Theory*. Bibliopolis, Napoli, 1984.

[5]

Bengt Nordström and Kent Petersson.*The Semantics of Module Specifications in Martin-Löf's Type Theory*. PMG Report 36, Chalmers University of Technology, S-412 96 Göteborg, 1987.

[6]

Bengt Nordström and Kent Petersson. Types and specifications. In R. E. A. Mason, editor,*Proceedings of IFIP 83*, pages 915–920, Elsevier Science Publishers, Amsterdam, October 1983.

[7]

Bengt Nordström and Jan Smith. Propositions, types and specifications in Martin-Löf's type theory.BIT, 24(3):288–301, October 1984.

[8]

Lawrence C. Paulson. Constructing recursion operators in intuitionistic type theory.*Journal of Symbolic Computation*, (2):325–355, 1986.

[9]

Lawrence C. Paulson.*Natural Deduction Proof as Higher-Order Resolution*. Technical report 82, University of Cambridge Computer Laboratory, Cambridge, 1985.

[10]

Kent Petersson.*A Programming System for Type Theory*. PMG report 9, Chalmers University of Technology, S-412 96 Göteborg, 1982, 1984.

[11]

E. Saaman and G. Malcolm.*Well-founded Recursion in Type theory*. Technical Report, Subfaculteit Wiskunde en Informatica, Rijksuniversiteit Groningen, Netherlands, 1987.

[12]

Jan M. Smith. The identification of propositions and types in Martin-Löf's type theory. In*Foundations of Computation Theory, Proceedings of the Conference*, pages 445–456, 1983.