Skip to main content
Log in

States and operators in the spacetime algebra

  • Part I. Invited Papers Dedicated To David Hestenes
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The spacetime algebra (STA) is the natural, representation-free language for Dirac's theory of the electron. Conventional Pauli, Dirac, Weyl, and Majorana spinors are replaced by spacetime multivectors, and the quantum σ- and γ-matrices are replaced by two-sided multivector operations. The STA is defined over the reals, and the role of the scalar unit imaginary of quantum mechanics is played by a fixed spacetime bivector. The extension to multiparticle systems involves a separate copy of the STA for each particle, and it is shown that the standard unit imaginary induces correlations between these particle spaces. In the STA, spinors and operators can be manipulated without introducing any matrix representation or coordinate system. Furthermore, the formalism provides simple expressions for the spinor bilinear covariants which dispense with the need for the Fierz identities. A reduction to2+1 dimensions is given, and applications beyond the Dirac theory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics, Vol. 1 (McGraw-Hill, New York, 1964).

    Google Scholar 

  2. C. Itzykson and J-B. Zuber,Quantum Field Theory (McGraw-Hill, New York, 1980).

    Google Scholar 

  3. D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966).

    Google Scholar 

  4. D. Hestenes, “Vectors, spinors, and complex numbers in classical and quantum physics,”Am. J. Phys. 39, 1013 (1971).

    Google Scholar 

  5. D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,”J. Math. Phys. 16(3), 556 (1975).

    Google Scholar 

  6. D. Hestenes, “Clifford algebra and the interpretation of quantum mechanics,” in J. S. R. Chisholm and A. K. Common, eds.,Clifford Algebras and Their Applications in Mathematical Physics (Reidel, Dordrecht, 1986), p. 321.

    Google Scholar 

  7. S. F. Gull, A. N. Lasenby, and C. J. L. Doran, “Electron paths, tunnelling and diffraction in the spacetime algebra,”Found. Phys. 23(10), (1993).

  8. R. Penrose and W. Rindler,Spinors and Space-time, Vol. I:Two-spinor Calculus and Relativistic Fields (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  9. S. F. Gull, A. N. Lasenby, and C. J. L. Doran, “Imaginary numbers are not real—the geometric algebra of spacetime,”Found. Phys. 23(9), 1175 (1993).

    Google Scholar 

  10. A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “2-spinors, twistors and supersymmetry in the spacetime algebra,” in Z. Oziewicz, A. Borowiec, and B. Jancewicz, eds.,Spinors, Twistors and Clifford Algebras (Kluwer Academic, Dordrecht, 1993), p. 233.

    Google Scholar 

  11. D. Hestenes and R. Gurtler, “Consistency in the formulation of the Dirac, Pauli and Schrödinger theories,”J. Math. Phys. 16(3), 573 (1975).

    Google Scholar 

  12. D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).

    Google Scholar 

  13. R. Penrose and W. Rindler,Spinors and Space-Time, Vol. II:Spinor and Twistor Methods in Space-Time Geometry (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  14. I. W. Benn and R. W. Tucker,An Introduction to Spinors and Geometry (Adam Hilger, London, 1988).

    Google Scholar 

  15. V. L. Figueiredo, E. C. de Oliveira, and W. A. Rodrigues, Jr., “Covariant, algebraic, and operator spinors,”Int. J. Theor. Phys. 29(4), 371 (1990).

    Google Scholar 

  16. S. F. Gull, “Charged particles at potential steps,” in A. Weingartshofer and D. Hestenes, eds.,The Electron (Kluwer Academic, Dordrecht, 1991), p. 37.

    Google Scholar 

  17. A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “A multivector derivative approach to Lagrangian field theory,”Found. Phys. 23(10), (1993).

  18. D. Hestenes, “Real Dirac theory,” in preparation, 1993.

  19. J. P. Crawford, “On the algebra of Dirac bispinor identities: factorization and inversion theorems,”J. Math. Phys. 26(7), 1439 (1985).

    Google Scholar 

  20. J. P. Crawford, “Dirac equation for bispinor densities,” in J. S. R. Chisholm and A. K. Common, eds.,Clifford Algebras and Their Applications in Mathematical Physics (Reidel, Dordrecht, 1986), p. 353.

    Google Scholar 

  21. R. P. Feynman,Quantum Electrodynamics (Addison-Wesley, Reading, Massachusetts, 1961).

    Google Scholar 

  22. H. A. Bethe and E. E. Salpeter,Quantum Mechanics of One- and Two-Electron Atoms (Springer, New York, 1957).

    Google Scholar 

  23. R. P. Martinez-Romero and A. L. Salas-Brito, “Conformal invariance in a Dirac oscillator,”J. Math. Phys. 33(5), 1831 (1992).

    Google Scholar 

  24. W. I. Fushchich and R. Z. Zhdanov, “Symmetry and exact solutions of nonlinear spinor equations,”Phys. Rep. 172(4), 125 (1989).

    Google Scholar 

  25. C. Daviau and G. Lochak, “Sur un modèle d'équation spinorielle non linéaire,”Ann. Fond. L. de Broglie 16(1), 43 (1991).

    Google Scholar 

  26. A. O. Barut and N. Zanghi, “Classical models of the Dirac electron,”Phys. Rev. Lett. 52(23), 2009 (1984).

    Google Scholar 

  27. P. West,An Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1986).

    Google Scholar 

  28. F. Reifler, “A vector wave equation for neutrinos,”J. Math. Phys. 25(4), 1088 (1984).

    Google Scholar 

  29. E. Marx, ‘Spinor equations in relativistic quantum mechanics,”J. Math. Phys. 33(6), 2290 (1992).

    Google Scholar 

  30. M. S. Plyuschay, “Lagrangian formulation for the massless (super)particles in (super)twistor approach,”Phys. Lett. B 240, 133 (1990).

    Google Scholar 

  31. M. S. Plyuschay, “Spin from isospin: The model of a superparticle in a non-Grassmannian approach,”Phys. Lett. B 280, 232 (1992).

    Google Scholar 

  32. S. Deser and R. Jackiw, “Statistics without spin. MasslessD = 3 systems,”Phys. Lett. B 263, 431 (1991).

    Google Scholar 

  33. N. Salingaros, “On the classification of Clifford algebras and their relation to spinors inn-dimensions,”J. Math. Phys. 23(1), 1 (1982).

    Google Scholar 

  34. Z. Hasiewicz, P. Siemion, and F. Defever, “A Bosonic model for particles with arbitrary spin,”Int. J. Mod. Phys. A 7(17), 3979 (1992).

    Google Scholar 

  35. G. W. Gibbons, “Kummer's configuration, causal structures and the projective geometry of Majorana spinors,” in Z. Oziewicz, A. Borowiec, and B. Jacewicz, eds.,Spinors, Twistors and Clifford Algebras (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a SERC studentship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doran, C., Lasenby, A. & Gull, S. States and operators in the spacetime algebra. Found Phys 23, 1239–1264 (1993). https://doi.org/10.1007/BF01883678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883678

Keywords

Navigation