Skip to main content
Log in

Stochastic optics: A reaffirmation of the wave nature of light

  • Part IV. Invited Papers Commemorating The Centenary Of The Birth Of Erwin Schrödinger
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum optics does not give a local explanation of the coincidence counts in spatially separated photodetectors. This is the case for a wide variety of phenomena, including the anticorrelated counting rates in the two channels of a beam splitter, the coincident counting rates of the two “photons” in an atomic cascade, and the “antibunching” observed in resonance fluorescence.

We propose a local realist theory that explains all of these data in a consistent manner. The theory uses a completely classical description of the electromagnetic field, but with boundary conditions of the far field that are equivalent to assuming a real fluctuating, zero-point field. It is related to stochastic electrodynamics similarly to the way classical optics is related to classical electromagnetic theory.

The quantitative aspects of the theory are developed sufficiently to show that there is agreement with all experiments performed till now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger,Naturwissenschaften 23, 807–812, 823–828; 844–849 (1935). English translation J. D. Trimmer,Proc. Am. Philos. Soc. 124, 323–338 (1980).

    Google Scholar 

  2. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  3. J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978).

    Article  Google Scholar 

  4. F. Selleri and G. Tarozzi,Riv. Nuovo Cimento 4, 1 (1981).

    Google Scholar 

  5. E. Schrödinger,Meine Weltansicht (P. Zsolnay, Hamburg-Wien, 1961).

    Google Scholar 

  6. E. Schrödinger,Letters on Wave Mechanics, K. Przibram, ed. (Vision, London, 1967). Letter to Einstein dated November 16, 1950.

    Google Scholar 

  7. P. Forman, “Weimar culture, causality and quantum theory,”Historical Studies in the Physical Sciences, Vol. 3 (University of Pennsylvania Press, Philadelphia, 1971).

    Google Scholar 

  8. T. W. Marshall, inOpen Questions in Quantum Physics, G. Tarozzi and A. van der Merwe, eds. (Reidel, Dordrecht, 1985), p. 257.

    Google Scholar 

  9. M. Born and A. Einstein,The Born-Einstein Letters (Macmillan, London, 1971), pp. 217 to 228, especially p. 221.

    Google Scholar 

  10. Ref. 6, letter to Planck dated July 4, 1927.

    Google Scholar 

  11. R. P. Feynman,Proceedings, Second Berkeley Symposium on Mathematical Statistics and Probability (University California Press, Los Angeles, 1951).

    Google Scholar 

  12. L. de Broglie,The Current Interpretation of Wave Mechanics (Elsevier, Amsterdam, 1964).

    Google Scholar 

  13. P. W. Milonni,Phys. Lett. C 25, 1 (1976).

    Google Scholar 

  14. E. T. Jaynes, inCoherence and Quantum Optics. IV, L. Mandel and E. Wolf, eds. (Plenum, New York, 1978), p. 495.

    Google Scholar 

  15. R. A. Loudon,Opt. Commun. 45, 361 (1983).

    Google Scholar 

  16. L. Mandel,Prog. Opt. 13, 27 (1976).

    Google Scholar 

  17. R. A. Loudon,Rep. Prog. Phys. 43, 913 (1980).

    Article  Google Scholar 

  18. B. d'Espagnat,Sci. Am., November, 1979.

  19. A. Aspect, inThe Ghost in the Atom, P. C. W. Davies and J. R. Brown, eds. (Cambridge University Press, 1986), p. 43.

  20. D. Bohm,Phys. Rev. 85, 166 (1952).

    Google Scholar 

  21. P. A. M. Dirac, inDirections in Physics, H. Hora and J. R. Shepanski, eds. (Wiley, Sidney, 1976).

    Google Scholar 

  22. M. Planck,Wärmestrahlung; English translation:Theory of Heat Radiation (Dover, New York, 1959).

  23. G. I. Taylor,Proc. Cambridge Philos. Soc. 15, 114 (1909).

    Google Scholar 

  24. L. Janossy and Z. Naray,Acta Phys. Hung. 7 403 (1957).

    Google Scholar 

  25. R. L. Pfleegor and L. Mandel,Phys. Rev. 159, 1084 (1967).

    Google Scholar 

  26. J. A. Wheeler, “Law without law,” inQuantum Theory of Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983), p. 182.

    Google Scholar 

  27. A. Rae,Quantum Physics—Illusion or Reality? (Cambridge University Press, 1986), p. 8.

  28. P. C. W. Davies and J. R. Brown,The Ghost in the Atom (Cambridge University Press, 1986), p. 8.

  29. A. Adam, L. Janossy, and P. Varga,Acta Phys. Hung. 4, 301 (1955);Ann. Phys. 16, 408 (1955).

    Google Scholar 

  30. E. T. Jaynes, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980), p. 37.

    Google Scholar 

  31. R. Hanbury-Brown and R. Q. Twiss,Nature (London) 177, 27 (1956).

    Google Scholar 

  32. J. F. Clauser,Phys. Rev. D 9, 853 (1974).

    Google Scholar 

  33. P. Grangier, G. Roger, and A. Aspect,Europhys. Lett. 1, 173 (1986).

    Google Scholar 

  34. C. O. Alley, O. Jakubowicz, C. A. Steggerda, and W. C. Wickes, inProceedings of the International Symposium Foundations of Quantum Mechanics in the Light of New Technology, S. Kamefuchiet al., eds. (Physical Society of Japan, Tokyo, 1983).

    Google Scholar 

  35. F. de Martini, report to Conference Quantum Uncertainties, Bridgeport, Connecticut (Plenum, New York, in press).

  36. C. O. Alley, O. G. Jakubowicz, and W. C. Wickes,Proceedings Second International Symposium Foundations of Quantum Mechanics (Physical Society of Japan, Tokyo, 1986).

    Google Scholar 

  37. W. Heitler,Quantum Theory of Radiation (Clarendon, Oxford, 1954), p. 60.

    Google Scholar 

  38. J. W. Goodman,Statistical Optics (Wiley, New York, 1985) Section 6-3.

    Google Scholar 

  39. A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 47, 460 (1981); A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982); A. Aspect and P. Grangier,Nuovo Cimento Lett. 43, 345 (1985); A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).

    Google Scholar 

  40. W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen,Phys. Rev. Lett. 54, 1790 (1985).

    Google Scholar 

  41. M. Dagenais and L. Mandel,Phys. Rev. A 18, 2217 (1978).

    Google Scholar 

  42. M. S. Chubarov and E. P. Nikolayev,Phys. Lett. A 110, 199 (1985).

    Google Scholar 

  43. L. I. Schiff,Quantum Mechanics (McGraw Hill, New York, 1968), Chapter 11.

    Google Scholar 

  44. P. L. Knight and L. Allen,Quantum Optics (Pergamon, Oxford, 1983).

    Google Scholar 

  45. J. F. Clauser and M. A. Horne,Phys. Rev. D 10, 326 (1974).

    Google Scholar 

  46. A. Einstein,Phys. Z.,10, 185 (1909).

    Google Scholar 

  47. T. A. Welton,Phys. Rev. 74, 1157 (1948).

    Google Scholar 

  48. T. H. Boyer,Ann. Phys. (N.Y.) 56, 474 (1970).

    Google Scholar 

  49. P. C. Claverie and S. Diner,Int. J. Quantum Chem. 12 Suppl. 1, 41 (1977).

    Google Scholar 

  50. T. H. Boyer, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980), p. 49.

    Google Scholar 

  51. L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, and A. Rueda, eds. (World Scientific, Singapore, 1983), p. 428.

    Google Scholar 

  52. T. H. Boyer, “The classical vacuum,”Sci. Am., August, 1985.

  53. A. Einstein,Phys. Z. 18, 121 (1917).

    Google Scholar 

  54. R. Short and L. Mandel,Phys. Rev. Lett. 51, 384 (1983).

    Google Scholar 

  55. C. K. Hong and L. Mandel,Phys. Rev. Lett. 54, 323 (1985).

    Google Scholar 

  56. T. W. Marshall and E. Santos, University of Cantabria preprint, 1986.

  57. T. W. Marshall and E. Santos,Europhys. Lett. 3, 293 (1987).

    Google Scholar 

  58. D. Greenberger, inMicrophysical Reality and Quantum Formalism, A. van der Merwe, F. Selleri, and G. Tarozzi, eds. (Reidel, Dordrecht, 1987).

    Google Scholar 

  59. F. Selleri, inThe Wave-Particle Dualism, S. Diner, D. Fargue, G. Lochak, and F. Selleri, eds. (Reidel, Dordrecht, 1984), p. 101.

    Google Scholar 

  60. J. S. Bell,Physics 1, 195 (1964).

    Google Scholar 

  61. E. Santos,Nuovo Cimento B 22, 201 (1974).

    Google Scholar 

  62. T. W. Marshall,Nuovo Cimento 38, 206 (1965).

    Google Scholar 

  63. E. P. Wigner, inQuantum Theory of Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983), p. 260.

    Google Scholar 

  64. A. Peres,Am. J. Phys. 54, 688 (1986).

    Google Scholar 

  65. J. G. Cramer,Rev. Mod. Phys. 58, 647 (1986).

    Google Scholar 

  66. D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951), Chap. 22.

    Google Scholar 

  67. H. Everett,Rev. Mod. Phys. 29, 454 (1957); reproduced in Wheeler and Zurek, Ref. 26.

    Google Scholar 

  68. D. Mermin,Proceedings, New Techniques and Ideas in Quantum Measurement Theory (New York, Academy Sciences, New York, 1987).

  69. A. Shimony,Brit. J. Philos. Sci. 35, 25 (1984).

    Google Scholar 

  70. C. Papaliolos,Phys. Rev. Lett. 18, 622 (1967).

    Google Scholar 

  71. J. F. Clauser,Nuovo Cimento B 33, 740 (1976).

    Google Scholar 

  72. T. W. Marshall and E. Santos,Phys. Lett. A 107, 164 (1985).

    Google Scholar 

  73. H. J. Kimble, M. Dagenais, and L. Mandel,Phys. Rev. A 18, 201 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, T., Santos, E. Stochastic optics: A reaffirmation of the wave nature of light. Found Phys 18, 185–223 (1988). https://doi.org/10.1007/BF01882931

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01882931

Keywords

Navigation