Archive for Rational Mechanics and Analysis

, Volume 115, Issue 1, pp 61–100

Stability of relative equilibria. Part II: Application to nonlinear elasticity

Authors

  • J. C. Simo
    • Division of Applied MechanicsStanford University
    • Department of Aerospace EngineeringUniversity of Minnesota
    • Department of MathematicsUniversity of California
  • T. A. Posbergh
    • Division of Applied MechanicsStanford University
    • Department of Aerospace EngineeringUniversity of Minnesota
    • Department of MathematicsUniversity of California
  • J. E. Marsden
    • Division of Applied MechanicsStanford University
    • Department of Aerospace EngineeringUniversity of Minnesota
    • Department of MathematicsUniversity of California
Article

DOI: 10.1007/BF01881679

Cite this article as:
Simo, J.C., Posbergh, T.A. & Marsden, J.E. Arch. Rational Mech. Anal. (1991) 115: 61. doi:10.1007/BF01881679

Glossary: Summary of notation employed for elasticity

Q = Emb+(ℬ, ℝ3)

Configuration Space, with elements denoted byϕQ

TQ

State Space; points in the state space correspond to configurations and velocities and are denoted by\((\varphi ,\dot \varphi )\)

P =T*Q

Phase Space; points inP correspond to configurations and momenta and are denoted by z = (ϕ, p)

(δϕ, δp)

Configuration-momentum variations inTϕQ ×Tϕ*P

SO(3)

Special orthogonal group; orthogonal 3 × 3 matrices with determinant 1

so(3)

Lie algebra of SO(3); 3 × 3 skew symmetric matrices

ηQ(ϕ)

Infinitesimal generator;ηQ =η × ϕ

〈·, ·〉g

Riemannian metric; for elasticity the inner product\(\left\langle {\delta \varphi _1 ,\delta \varphi _2 } \right\rangle _g = \int\limits_B {\rho _{ref} \delta \varphi _1 \cdot \delta \varphi _2 dV} \).

Locked inertia tensor; defined as

A(ϕ)

First elasticity tensor; defined as\(A(\varphi ) = \left. {\frac{{\partial ^2 W}}{{\partial F\partial F}}} \right|_{F = D\varphi } \)

J:Pso*(3)

Angular momentum map;J(ϕ, p)· n = < 〈p,ηQ(ϕ)〉

K:P → ℝ

Kinetic energy

V:Q → ℝ

Potential energy

H:P → ℝ

Hamiltonian function;H=K + V

Hξ:P × ℝ3→ ℝ

Energy-momentum functional (Routhian)

£db

Lie derivative ofb in directiona

ϱrefB(ϕ)

Configuration dependent body force with potentialL: Q → ℝ

Download to read the full article text

Copyright information

© Springer-Verlag 1991