Skip to main content
Log in

Interaction of chemotactic factors with human polymorphonuclear leukocytes: Studies using a membrane potential-sensitive cyanine dye

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Changes in the fluorescence intensity of the dye 3-3′ dipentyloxacarbocyanine were measured in suspensions of purified human peripheral blood polymorphonuclear leukocytes (PMNs) during exposure to the chemotactic factors N-formyl-methionylleucyl-phenylalanine (f-met-leu-phe) and partially purified C5a. Incubation of PMNs with dye resulted in a stable fluorescence reflecting the resting membrane potential of the cell. Exposure of PMNs to dye did not affect stimulated chemotaxis or secretion. The mechanism of cell-associated dye fluorescence involved solvent effects from partitioning of the dye between the aqueous incubation medium and the cell and not dye aggregation, Chemotactically active concentrations of f-met-leu-phe (5×10−9 m or greater) produced a biphasic response characterized as a decrease followed by an increase in fluorescence. No fluorescence response was seen in lysed PMNs, and no response was elicited by an inhibitor of f-met-leu-phe binding (carbobenzoxy-phenylalanyl-methionine). The ability of several other synthetic peptides to elicit a fluorescence response corresponded to their effectiveness as chemotactic agents. Although the first component of the response suggested a depolarization, it was not influenced by variation in the external concentration of sodium, potassium, chloride, or calcium, and could not be characterized as a membrane potential change. The second component of the response, which was inhibited by both Mg2+ (10mm)-EGTA (10mm) and high external potassium, was compatible with a membrane hyperpolarization. The data indicate that chemotactic factors produce changes in dye fluorescence which can, at least in part, be attributed to a hyperpolarizing membrane potential change occurring across the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aswanikumar, S., Schiffmann, E., Corcoran, B.A., Wahl, S.M. 1976. Role of a peptidase in phagocyte chemotaxis.Proc. Nat. Acad. Sci. USA 73:2439

    Google Scholar 

  2. Baker, P.R., Meves, H., Ridgway, E.B. 1973. Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axions.J. Physiol (London) 231:511

    Google Scholar 

  3. Baran, D.N., Ahmed, S.A. 1969. Intracellular concentrations of water and of the principle electrolytes determined by the analysis of isolated leukocytes.Clin. Sci. 37:205

    Google Scholar 

  4. Becker, E.L., Davis, A.T., Estensen, R.D., Quie, P.Q. 1972. Cytochalasin B. IV. Inhibition and stimulation of chemotaxis of rabbit and human polymorphonuclear leukocytes.J. Immunol. 108:396

    Google Scholar 

  5. Becker, E.L., Showell, H.J. 1972. The effect of Ca2 and Mg2+ on the chemotactic responsiveness and spontaneous motility of rabbit polymorphonuclear leukocytes.Z. Immunitaetsforsch. Exp. Klin. Immunol. 143:466

    Google Scholar 

  6. Becker, E.L., Showell, H.J., Henson, P.M., Hsu, L.S. 1974. The ability of chemotactic factors to induce lysosomal enzyme release. I. The characteristics of the release, the importance of surfaces, and the relation of enzyme release to chemotactive responsiveness.J. Immunol. 112:2047

    Google Scholar 

  7. Becker, E.L., Showell, H.J., Naccache, P.H., Sha'afi, R. 1978. Enzymes in granulocyte movement: Preliminary evidence for the involvement of Na+, K+ ATPase.In: Leukocyte Chemotaxis. J.I. Gallin and P.G. Quie, editors, p. 113. Raven Press, New York

    Google Scholar 

  8. Becker, E.L., Sigman, M., Oliver, J.M. 1979. Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptides and A23187: The nature of the receptor and the requirement for Ca2+.Am. J. Pathol. 95: 81

    Google Scholar 

  9. Becker, E.L., Talley, J.V., Showell, H.J., Naccache, P.H., Sha'afi, R.I. 1978. Activation of the rabbit polymorphonuclear leukocyte membrane “Na+, K+”-ATPase by chemotactic factor.J. Cell Biol. 77:329

    Google Scholar 

  10. Bergmeyer, H.U., Brent, E., Hess, B. 1963. Lactic dehydrogenase.In: Methods of Enzymatic Analysis. H.U. Bergmeyer, editor. p. 736. Academic Press, New York

    Google Scholar 

  11. Boucek, M.M., Snyderman, R. 1976. Calcium influx requirement for human neutrophil chemotaxis: Inhibition with lanthanum chloride.Science 193:905

    Google Scholar 

  12. Boyum, A. 1968. Isolation of mononuclear cells and granulocytes from human blood.Scand. J. Clin. Lab. Invest. 97(Suppl.29:77

    Google Scholar 

  13. Burckhardt, G. 1977. Non-linear relationship between fluorescence and membrane potential.Biochim. Biophys. Acta 468:227

    Google Scholar 

  14. Cividalli, G., Nathan, D.G. 1974. Sodium and potassium concentration and transmembrane fluxes in leukocytes.Blood 43:861

    Google Scholar 

  15. Cochrane, D.E., Douglas, W.W. 1974. Calcium-induced extrusion of secretory granules (exocytosis) in mast cells expressed to 48/80 or the ionophores A-23187 and X537 A.Proc. Nat. Acad. Sci. USA 71:408

    Google Scholar 

  16. Cramer, E.B., Gallin, J.I. 1979. Localization of submembranous cations to the leading end of human neutrophils during chemotaxis.J. Cell Biol. 82:369

    Google Scholar 

  17. Deutsch, C.J., Holian, A., Holian, S.K., Daniele, R.P., Wilson, D.F. 1979. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes.J. Cell. Physiol. 99:79

    Google Scholar 

  18. Dunham, P.B., Goldstein, I.M., Weissmann, G. 1974. Potassium and amino acid transport in human leukocytes exposed to phagocytic stimuli.J. Cell. Biol. 63:215

    Google Scholar 

  19. Gallin, E.K., Gallin, J.I. 1977. Interaction of chemotactic factors with human macrophages: Induction of transmembrane potential changes.J. Cell Biol. 75:277

    Google Scholar 

  20. Gallin, E.K., Seligmann, B., Gallin, J.I. 1979. Alteration of macrophage and monocyte membrane potential by chemotactic factor.In: The Third International Congress on the Mononuclear Phagocyte. R. Van Furth, editor. Martinus Nijhoff BV, The Hague (in press)

    Google Scholar 

  21. Gallin, E.K., Wiederhold, M.L., Lipsky, P.E., Rosenthal, A.S. 1975. Spontaneous and induced membrane hyperpolarizations in macrophages.J. Cell. Physiol. 86:653

    Google Scholar 

  22. Gallin, J.I., Clark, R.A., Kimball, H.R. 1973. Granulocyte chemotaxis: An improvedin vitro assay employing51Cr labelled granulocytes.J. Immunol. 110:233

    Google Scholar 

  23. Gallin, J.I., Durocher, J.R., Kaplan, A.P. 1975. Interaction of leukocyte chemotactic factors with the cell surface. I. Chemotactic factor-induced changes in human granulocyte surface charge.J. Clin. Invest. 55:967

    Google Scholar 

  24. Gallin, J.I., Gallin, E.K., Malech, H.L., Cramer, E.B. 1978. Structural and ionic events during leukocyte chemotaxis.In: Leukocyte chemotaxis. J.I. Gallin and P.G. Quie, editors, p. 123. Raven Press, New York

    Google Scholar 

  25. Gallin, J.I., Rosenthal, A.S. 1974. The regulatory role of divalent cations in human granulocyte chemotaxis: Evidence for an association between calcium exchanges and microtubule assembly.J. Cell Biol. 62:594

    Google Scholar 

  26. Goldstein, I.M., Brai, M., Osler, A.G., Weissmann, G. 1973. Lysosomal enzyme release from human leucoytes: Mediation by the alternate pathway of complement activation.J. Immunol. 111:33

    Google Scholar 

  27. Goldstein, I.M., Hoffstein, S., Gallin, J.I., Weissmann, G. 1973. Mechanisms of lysosmal enzyme release from human leukocytes: Microtubule assembly and membrane fusion induced by a component of complement.Proc. Nat. Acad. Sci. USA 70:2916

    Google Scholar 

  28. Hank, R.A., Ingraham, L.M., Baehner, R.L. 1979. Membrane fluidity in human and mouse Chediak-Higashi leukocytes.J. Clin. Invest. 64:138

    Google Scholar 

  29. Hladky, S.B., Rink, T.J. 1976. Potential difference and the distribution of ions across the human red blood cell membrane: A study of the mechanism by which the fluorescent cation, di-S−C3(5) reports membrane potential.J. Physiol. (London) 263:287

    Google Scholar 

  30. Hodgkin, A.L., Keynes, R.D. 1955. The potassium permeability of a giant nerve fiber.J. Physiol. (London) 128:61

    Google Scholar 

  31. Jasaitis, A.A., Kuliene, V.V., Skulachev, V.P. 1971. Anilino-naphthalenesulfonate fluorescence changes induced by non-enzymatic generation of membrane potential in mitochondria and submitochondrial particles.Biochim. Biophys. Acta 234:177

    Google Scholar 

  32. Klebanoff, S.J. 1979. Oxygen intermediates and the microbicidal event.In: The Third International Congress on the Mononuclear Phagocyte. R. Van Furth, editor (in press)

  33. Korchak, H.M., Weissmann, G. 1978. Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation.Proc. Nat. Acad. Sci. USA 75:3818

    Google Scholar 

  34. Laris, P.C., Bahr, D.P., Ghaffee, R.R.J. 1975. Membrane potentials in mitochondrial preparations measured by means of a cyanine dye.Biochim. Biophys. Acta 376:415

    Google Scholar 

  35. Lichtman, M.A., Weed, R.I. 1970. Electrophoretic mobility and N-acetylneuraminic acid content of human normal and leukemic lymphocytes and granulocytes.Blood 35:12

    Google Scholar 

  36. Litwack, G. 1955. Photometric determination of lysozyme activity.Proc. Soc. Exp. Biol. Med. 89:401

    Google Scholar 

  37. Martin, P.L., Shain, W. 1979. High affinity transport of taurine and β-alanine and low affinity transport GABA by a single transport system in cultured gliama cells.J. Biol. Chem. (in press)

  38. McCord, J.M., Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein).J. Biol. Chem. 244:6049

    Google Scholar 

  39. McKinley, D., Meissner, G. 1978. Evidence for a K+, Na+ permeable channel in sarcoplasmic reticulum.J. Membrane Biol. 44:159

    Google Scholar 

  40. Montecucco, L., Pozzan, T., Rink, T. 1979. Dicarbocyanine fluorescent probes of membrane potential block lymphocyte capping, deplete cellular ATP and inhibit respiration of isolated mitochondria.Biochim. Biophys. Acta 552:552

    Google Scholar 

  41. Naccache, P.H., Showell, H.J., Becker, E.L., Sha'afi, R.I. 1977. Sodium, potassium and calcium transport across rabbit polymorphonuclear leukocyte membranes: Effect of chemotactic factor.J. Cell Biol. 73:428

    Google Scholar 

  42. Padday, J.F. 1968. Metachromasy of a thiocarbocyanine dye in aqueous solution: The formation of dimers and trimers.J. Physical Chem. 72:1259

    Google Scholar 

  43. Philo, R.D., Eddy, A.A. 1978. The membrane potential of mouse ascites-tumour cells studied with the fluorescent probe 3,3-dipropyloxadicarbocyanine.Biochem. J. 174:801

    Google Scholar 

  44. Schiffmann, E., Corcoran, B.A., Aswanikumar, S. 1978. Molecular events in the response of neutrophils to synthetic N-fMET chemotactic peptides: Demonstration of a specific receptor.In: Leukocyte Chemotaxis. J.I. Gallin and P.G. Quie, editors. p. 97. Raven Press, New York

    Google Scholar 

  45. Schuldiner, S., Kaback, H.R. 1976. Membrane potential and active transport in membrane vesicles fromEscherichia coli.Biochemistry 14:5451

    Google Scholar 

  46. Seligmann, B., Gallin, J.I. 1980. Secretagogue modulation of the response of human neutrophils to chemoattractants: Studies with a membrane potential sensitive cyanine dye.Mol. Immunol. (in press)

  47. Seligmann, B., Gallin, E.K., Martin, D.L., Shain, W., Gallin, J.I. 1977. Evidence for membrane potential changes in human polymorphonuclear leukocytes during exposure to the chemotactic factor f-met-leu-phe as measured with the fluorescence dye dipentyloxacarbocyanine.J. Cell Biol. 75:103a

    Google Scholar 

  48. Showell, H.J., Becker, E.L. 1976. The effect of external K+ and Na+ on the chemotaxis of rabbit peritoneal neutrophils.J. Immunol. 116:99

    Google Scholar 

  49. Showell, J.J., Freer, R.J., Zigmond, S.H., Schiffmann, E., Asuanikumar, S., Corcoran, B., Becker, E.L. 1976. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils.J. Exp. Med. 143:1154

    Google Scholar 

  50. Showell, H.J., Naccache, P.H., Sha'afi, R.I., Becker, E.L. 1977. The effects of extracellular K+, Na+ and Ca++ on lysosomal enzyme secretion from polymorphonuclear leukocytes.J. Immunol. 119:804

    Google Scholar 

  51. Simons, T.J.B. 1979. Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts.J. Physiol. (London) 288:481

    Google Scholar 

  52. Sims, J., Waggoner, A.S., Wang, C.-H., Hoffman, J.R. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 3:3315

    Google Scholar 

  53. Talalay, P., Fishman, W.H., Huggins, C. 1946. Chromagenic substrates. II. Phenolphthalein glucuronic acid as substrate for the assay of glucuronidase activity.J. Biol. Chem. 166:757

    Google Scholar 

  54. Utsumi, K., Sugiyama, K., Miyahara, M., Naito, M., Auai, M., Inoue, M. 1977. Effect of concanavalin A on membrane potential of polymorphonuclear leukocyte monitored by fluorescent dye.Cell Struct. Funct. 2:203

    Google Scholar 

  55. Waggoner, A. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317

    Google Scholar 

  56. Ward, P.A., Becker, E.L. 1970. Potassium reversible inhibition of chemotaxis by ouabain.Life Sci. 9:355

    Google Scholar 

  57. Wilkinson, P.C., Allan, R.B. 1978. Assay systems for measuring leukocyte locomotion: An overview.In: Leukocyte Chemotaxis. J.I. Gallin and P.G. Quie, editors. p. 1. Raven Press, New York

    Google Scholar 

  58. Zigmond, S.H. 1978. Chemotaxis by polymorphonuclear leukocytes.J. Cell Biol. 77:269

    Google Scholar 

  59. Zilberstein, D., Schuldiner, S., Padan, E. 1979. Proton electrochemical gradient inEscherichia coli cells and its relation to active transport of lactose.Biochemistry 18:669

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seligmann, B.E., Gallin, E.K., Martin, D.L. et al. Interaction of chemotactic factors with human polymorphonuclear leukocytes: Studies using a membrane potential-sensitive cyanine dye. J. Membrain Biol. 52, 257–272 (1980). https://doi.org/10.1007/BF01869194

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869194

Keywords

Navigation