Skip to main content
Log in

Physics of selective systems: Computation and biology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The statistical thermodynamics of systems displaying selective behavior is used to discuss some important ultimate physical limitations of computers and biological systems. These cluster around communication of information, measurement, and irreversible processes. The most fundamental limitation is irreducible increase of entropy accompanying selective acts like measurement of preparation. Relevant theory of machines (automata. Turing machines) and issues involved in physical realizations of those machines are discussed. Quantum measurement, the Einstein-Podolsky-Rosen paradox, the fundamental importance of irreversibility, information and entropy, and their relation to Goedel's theorems on completeness and consistency of formal systems are analyzed. Irreversibility of measurement appears necessary to provide quantum mechanics with the incompleteness needed to avoid inconsistency. Motivation and justification of computer paradigms for fundamental modeling of biological systems is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benioff, P. (1980).Journal of Statistical Physics,22, 563.

    Google Scholar 

  • Benioff, P. (1982).International Journal of Theoretical Physics 21, 177 (this issue).

    Google Scholar 

  • Bennett, C. H. (1973).IBM Journal of Research and Development,6, 525.

    Google Scholar 

  • Bennett, C. H. (1982).International Journal of Theoretical Physics, to appcar.

  • Bohr, N. (1935).Physical Review,48, 696.

    Google Scholar 

  • Cooper, J. A., Jr. (1981).Proceedings of the IEEE,69, 267.

    Google Scholar 

  • Denning, P. J., Dennis, J. B., and Qualitz, J. E. (1978),Machines, Languages, and Computation. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Einstein, A., Podolsky, B., and Rosen, N. (1935).Physical Review,47, 777.

    Google Scholar 

  • Fredkin, E., and Toffoli, T. (1982).International Journal of Theoretical Physics,21, 219 (this issue).

    MathSciNet  Google Scholar 

  • Goedel, K. (1931).Monatshefte für Mathematik und Physik,38, 173.

    Article  Google Scholar 

  • Goedel, K. (1936).Ergeb. eines math. Kolloquium,4, 34.

    Google Scholar 

  • Ginzburg, A., (1968).Algebraic Theory of Automata. Academic Press, New York.

    Google Scholar 

  • Hopcroft, J. E., and Ullman, J. D. (1979).Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Keyes, R. W. (1981).Proceedings of the IEEE,69, 267.

    Google Scholar 

  • Kogelnik, H. (1981).Proceedings of the IEEE,69, 262.

    Google Scholar 

  • Lamb, W. E., Jr. (1969).Physics Today,22, 23.

    Google Scholar 

  • Landauer, R. (1961).IBM Journal,5, 183.

    Google Scholar 

  • Likharev, K. K. (1982).International Journal of Theoretical Physics,21, 311 (this issue).

    Google Scholar 

  • Personick, S. D. (1981).Proceedings of the IEEE 69, 262.

    Google Scholar 

  • Rothstein, J. (1951).Science,114, 171.

    Google Scholar 

  • Rothstein, J. (1957).American Journal of Physics,25, 510.

    Google Scholar 

  • Rothstein, J. (1959).Methodos,11, 94.

    Google Scholar 

  • Rothstein, J. (1964).Philosophy of Science,31, 40.

    Google Scholar 

  • Rothstein, J. (1967). Chapter XIX inCommunication: Concepts and Perspectives. L. Thayer, ed. Spartan Books, Washington, D.C..

    Google Scholar 

  • Rothstein, J. (1971). “Informational Generalization of Physical Entropy,” inQuantum Theory and Beyond, T. Bastin, ed. pp. 291–305. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Rothstein, J. (1974).Foundations of Physics,4, 83.

    Google Scholar 

  • Rothstein, J. (1979). “Generalized Entropy, Boundary Condition and Biology,” inThe Maximum Entropy Formalism, R. D. Levine and M. Tribus eds., pp. 423–468. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Toffoli, T. (1981).Mathematical Systems Theory,14, 13.

    Google Scholar 

  • Turing, A. M. (1936).Proceedings of the London Mathematical Society,42, 230;43, 544.

    Google Scholar 

  • Turing, A. M. (1937).Journal of Symbolic Logic,2, 153.

    Google Scholar 

  • Schilpp, P. A., ed. (1949).Albert Einstein, Philosopher-Scientist, Vol. VII,Library of Living Philosophers (Univ. of Illinois Press, Glencoe). Paperback reprint. Open Court Pub. Co. LaSalle, Illinois.

    Google Scholar 

  • Szilard, L. (1929).Zeitschrift für Physik,53, 840.

    Google Scholar 

  • Von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics. Princeton Univ. Press. Princeton, New Jersey.

    Google Scholar 

  • Wyner, A. D. (1981).Proceedings of the IEEE,69, 239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothstein, J. Physics of selective systems: Computation and biology. Int J Theor Phys 21, 327–350 (1982). https://doi.org/10.1007/BF01857734

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01857734

Keywords

Navigation