Skip to main content
Log in

Hawaiian basalt and Icelandic rhyolite: Indicators of differentiation and partial melting

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Auf Hawaii treten, trotz intensiven Basalt-Vulkanismusses, keine Rhyolithe auf. Auf Island dagegen ist Rhyolith, mit 10–12% des anstehenden Gesteins, verbreitet. Dieser Kontrast wurde anhand grundlegender magmatischer Prozesse untersucht, wie sie in flachen Lava-Seen Hawaiis und im Shonkin Sag Laccolith Montanas auftreten. Hochdifferenzierte Restschmelzen verbleiben innerhalb langsam nach innen vorrückender Erstarrungsfronten und sind meist unerreichbar für eruptive Prozesse. Nur wenn anfänglich bereits große Mengen von Einsprenglingen vorhanden sind, die rasch am Boden der Magmenkammer akkumulieren, kann eine hochdifferenzierte Schmelze in den aktiven (d.h. eruptiven) Teil der Magmenkammer gelangen. Obwohl auf Hawaii die Differentiation durch die Kristallisation von Olivin anhaltend kontrolliert wird, findet an der Erstarrungsfront weitere Differentiation statt. Nur durch wiederholten Transport und zeitweiliges Verharren ist es möglich, über die kritische Zusammensetzung der vordersten Erstarrungsfront hinaus zu differenzieren (ca. 7% MgO und 51,5% SiO2). An Kristallgrö-ßenverteilungen (CDS) von Hawaii und Shonkin Sag können die angenommenen physikalischen und chemischen Prozesse der Kristallisation und die Kristallisationskinetik gezeigt werden. Ein weit verbreitetes Merkmal dieser Basaltkörper ist die Bildung grobkristalliner Gänge und Absonderung von stark differenzierten Schmelzen und Granophyren innerhalb der oberen Erstarrungsfront. Diese ausgeprägt bimodale Charakteristik ist der Schlüssel zum Verständnis des sauren isländischen Vulkanismus.

Isländische Rhyolithe treten meist in bimodaler Verbreitung mit Basalten in Zusammenhang mit zentralen Vulkanen auf. Rhyolithe, Granophyre und Feisite sind häufig, in oft geschichteten Intrusionen. Ignimbrite und echte Granitintrusionen sind selten. Die großen Mengen SiO2-reicher Laven am Torfajokull-Zentralvulkan enthalten Ein-sprenglinge, die sich nicht im Gleichgewicht mit der Matrix befinden. Dies, und die unterschiedlichen delta-18O-Werte von Rhyolithen und Basalten, zeigen, daß ausgeprägtes teilweises Aufschmelzen der heterogenen Basaltkruste von Island zur Produktion dieser Rhyolithe führte. Relativ kleine, nahe benachbarte saure Körper, die aber deutliche Unterschiede in ihrem Chemismus aufweisen, werden gebildet durch die Konzentration granophyrischer Teilschmelzen aus früheren Kristallisationszyklen. Dieser Vorgang wird auch widergespiegelt in der »layered intrusions« von Slaufrudalur in Ostisland. Slaufrudalur ist eine geschlossene unterirdische Kaldera, deren magmatische Prozesse und Baustil der subaerischen Torfajokull-Kaldera entsprechen.

Die Prozesse in Hawaii sind dominiert von gravitativer Kristallisationsdifferentiation und es werden keine Rhyolithe produziert. Die isländische Tektonik führt zu kontinuierlicher starker Wiederaufarbeitung von dünner, heißer basaltischer Kruste. Dabei wird, durch die Konzentration ursprünglicher saurer Teilschmelzen und Gänge und durch die teilweise Aufschmelzung intermediärer Intrusiva, die tief in die Kruste abgesunken sind, Rhyolith produziert.

Abstract

In spite of the voluminous basaltic volcanism on the island of Hawaii, rhyolite is not produced. Iceland, on the other hand, exhibits common rhyolitic volcanism amounting to some 10–12% of its surface rocks. This contrast is investigated using the fundamental igneous processes exhibited by sheet-like Hawaiian lava lakes and Shonkin Sag laccolith in Montana. Highly differentiated, residual melts normally reside within inwardly advancing solidification fronts and are generally inaccessible to eruptive processes. Only when a large initial phenocryst population is present, from which a thick basal cumulate can rapidly form, is it possible to supply highly differentiated melt into the active (i.e., eruptable) portion of the magma chamber. Although there is protracted control of differentiation at Hawaii by settling of olivine, further differentiation occurs within the solidification fronts. Only by repeated transport and holding is it possible to differentiate beyond the critical composition of the leading edge of the solidification front (∼ 7% MgO and 51.5% SiO2). Crystal size distributions (CSDs) for Hawaii and Shonkin Sag are used to demonstrate the inferred physical and chemical processes of solidification, including the kinetics of crystallization.

A ubiquitous feature of these basaltic bodies is the formation of coarse veins and segregations of refined melt and granophyres within the upper solidification front. It is this fundamental bimodal feature which is the key to understanding Icelandic silicic volcanism.

Rhyolites in Iceland occur mainly as a bimodal population with basalts associated with central volcanoes. Rhyolites, granophyres, and felsites are common, with the intrusions often being layered. Ash flows and true granite-like intrusions are rare. The voluminous silicic lavas at Torfajokull central volcano contain disequilibrium phenocryst assemblages. This, and the disagreement in oxygen isotopic values between rhyolites and basalts, reflects extensive partial melting of the heterogeneous basaltic crust of Iceland to produce these rhyolites. Relatively small, chemically distinct, and spatially intimate silicic bodies are formed by concentrating granophyric segregations from earlier cycles of solidification. This process is also reflected in the layered granophyric instrusion of Slaufrudalur in eastern Iceland. Slaufrudalur is an unvented subterranean caldera, equivalent in igneous processes and style to the subaerial Torfajokull caldera.

Hawaii is dominated by fractional crystallization due to crystal settling and does not produce rhyolite. Iceland's tectonics allow continual and extensive reprocessing of thin, hot basaltic crust which produces rhyolite by concentrating original silicic segregations and veins and by partially melting intermediate extrusives, which have subsided deep into the crust.

Résumé

En dépit du volcanisme basaltique volumineux des îles Hawaï, il n'y existe pas de rhyolite. En Islande, par contre, le volcanisme rhyolitique est commun et représente 10 à 12% des roches de la surface. Ce contraste est examiné sur la base des processus ignés fondamentaux présentés par les lacs de lave d'Hawaï et le laccolite de Shonkin Sag au Montana. Normalement, les liquides résiduels hautement différenciés résident à l'intérieur des fronts de solidification qui progressent vers l'arrière et sont généralement à l'abri des processus éruptifs. Ce n'est que dans le cas d'une population initiale abondante de phénocristaux, qui se rassemblent dans un cumulat basai épais, que des liquides hautement différenciés peuvent être fournis à la portion active (c'est-à-dire »éruptible«) de la chambre magmatique. A Hawaï, bien que la différenciation soit continuellement régie par la cristallisation d'olivine, la poursuite du processus a lieu à l'intérieur des fronts de solidification. Ce n'est que par la répétition d'actions de transport et de stagnation qu'il est possible de différencier audelà de la composition critique du front de solidification (±7% MgO et 51,5% SiO2). A partir de la distribution de la taille des cristaux à Hawaï et à Shonkin Sag, on peut déduire les processus physique et chimique de la solidification, y compris la cinétique de la cristallisation.

Une particularité courante de ces corps basaltiques est la formation de veines grenues et de ségrégations de liquides très différenciés et de granophyres à l'intérieur du front supérieur de solidification. Cette manifestation bimodale est la clé qui permet de comprendre le volcanisme siliceux islandais.

En Islande, les rhyolites constituent d'ordinaire une population bimodale avec les basaltes centraux. Les rhyolites, les granophyres et les felsites sont fréquents, et souvent sous forme d'intrusions litées. Les coulées ardentes et les vraies intrusions de type granitique sont rares. Les volumineuses laves siliceuses du volcan central de Torfajokull contiennent des assemblages de phénocristaux en déséquilibre. Ce fait, ainsi que la non concordance des isotopes de l'oxygène entre rhyolites et basaltes, traduisent, à l'origine de ces rhyolites, une fusion partielle extensive de la croûte basaltique hétérogène d'Islande. Des corps siliceux relativement petits et chimiquement distincts bien que d'emplacements très voisins se sont formés par concentration de fusions partielles granophyriques lors des premiers cycles de solidification. Ce processus s'exprime également dans l'intrusion granophyrique litée de Slaufrudalur, en Islande orientale. Slaufrudalur est une caldeira souterraine fermée, équivalente par son style et son processus igné à la caldeira subaérienne de Torfajokull.

A Hawaï, le phénomène dominant est la cristallisation fractionnée gravitative, sans production de rhyolite. La tectonique de l'Islande permet la régénération continue et extensive d'une mince croûte basaltique chaude. Les rhyolites y sont engendrées par la concentration des veines et ségrégations siliceuses originelles et par la fusion partielle de masses extrusives intermédiaires descendues profondément dans la croûte.

Краткое содержание

Несмотря на большое р аспространение база льтового вулканизма на Гаваях, присутствие риолитовых пород в не м не установлено. Одна ко, в Исландии эти послед ние распространены и составляют 10–12% от все х пород. Этот феномен исследовали с помощью основных ма гматических процессов, анализиру я мелкие озера лав на Гаваях и в Shonkin Sag Laccolith Montanas. Высоко дифференциро ванные остаточные расплавы остаются в м едленно продвигающи хся фронтах затвердеван ия и для эруптивных процессов оказывают ся не досягаемыми. Тол ько при наличие больших к оличеств расплавов, быстро накопившихся на дне магматической камеры, такая высокод ифференцированная магма может оказатьс я выброшенной. Хотя на Гаваях дифференциац ией управляет криста ллизация оливина, во фронте зат вердевания происход ит дальнейший процесс д ифференциации. Только при последующ их приносах и застыва нии на время оказывается возможным дальнейша я дифференциация свер х критического соста ва первичного фронта за твердивания. (примерн о 7% MgO и 51,5% SiO2). По распределени ю величин кристаллов (CDS) в магмах Гаваев и Shonkin Sag можно установить, как физические, так и химические проц ессы кристаллизации и кинетику этих проце ссов.

Отличительным призн аком этих базальтовы х тел является образов ание грубокристалли ческих жил и выделений высок о дифференциированн ых расплавов и гранофир ов в верхней части фронта затверд евания. Такая явная би модальная характеристика явля ется ключем к пониманию появления кислого вулканизма И сландии. Исландские риолиты распределен ы обычно бимодально с базальт ами центральных вулк анов. Риолиты, гранофиры и ф ельзиты встречаются часто в интрузиях, про являющих слоистое строение. Ишимбриты и настоящий интрузии гранитов встречаютс я здесь очень редко. Большие количе ства лав, богатых крем невой кислотой в центральн ом вулкане Torfajokull содержат вкрапления, находящиеся в неурав новешенном состоянии по отношен ию к матрице.

Это, как и различия зна чений18O риолитов и базальтов указывае т на то, что к появлению риолитов приводит яс но выраженное частич ное расплавление гетеро генной базальтовой коры Исландии. Сравни тельно небольшие, залегающие по соседс тву кислые тела, явно различающиеся по их х имизму, образуются в результате накоплен ия гранофирового мат ериала при частичном распла влении пород предшес твующих циклов кристаллизац ии, Этот процесс отображен «с лоистыми интрузиями » («layered intrusions») Slaufrudalur, залегающими в восточной части Исл андии. Последняя пред ставляет собой закрытую подзе мную кальдеру, магматические проце ссы которой, как и стил ь ее строения соответс твуют субаэральной кальдере Torfajokull.

Доминирующим процес сом на Гаваях является кристаллиз ационная дифференци ация под воздействием сил тяжести и поэтому там риолиты не образуютс я. Тектоника Исландии ведет к непрерывной с ильной переботке тонкой горячей базал ьтовой коры. При этом в результате накоплен ия исходного кислого материала и жил, а также частично го расплавления интрузивов среднего состава, внедрившихс я глубоко в кору, могут о бразовываться риолиты.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson, A. T., Jr., Swhart, G. H., Artiol G. &Geiger, C. A. (1984): Segregation vesicles, gas filter pressing, and igneous differentiation. - J. Geol.,92, 55–72.

    Google Scholar 

  • Barksdale, J. D. (1937): The Shonkin Sag laccolith. - Amer. Jour. Sci.,33, 321–359.

    Google Scholar 

  • — (1952): The pegmatite layer in the Shonkin Sag laccolith. - Amer. Jour. Sci.,250, 705–720.

    Google Scholar 

  • Bauer, G. R., Fisher, R. V., Husler, J. W. &Keil, K. (1973): Contributions to the mineral chemistry of Hawaiian rocks: III. Composition and mineralogy of a new rhyodacite occurrence on Oahu, Hawaii. - Contrib. Mineral. Pet.,40, 183–194.

    Google Scholar 

  • Beswick, A. E. (1965): A study of the Slaufrudal granophyre intrusion, south-east Iceland. - Ph. D. Thesis, Imperial College, London, U.K., 283 p.

    Google Scholar 

  • Bjornsson, A., Saemundsson, K., Einarsson, P., Tryggvason, E. &Gronvold, K. (1977): Current rifting episode in north Iceland. - Nature,266, 318–323.

    Google Scholar 

  • Blake, D. H. (1964): The volcanic geology of the Austurhorn area, south-eastern Iceland. - Unpublished Ph. D. Dissertation, Imperial College, University of London, 191 pp.

  • Blake, S. (1981): Eruptions from zoned magma chambers. - J. geol. Soc. London,138, 281–287.

    Google Scholar 

  • — (1984): Magma mixing and hybridization processes at the alkalic, silicic, Torfajokull central volcano triggered by tholeiitic Veidivotn fissuring, south Iceland. - J. Volcan. Geotherm. Res.,22, 1–31.

    Google Scholar 

  • Bowen, N. L. (1910): Diabase and granophyre of the Gowganda Lake district, Ontario. - J. Geol.,18, 658–674.

    Google Scholar 

  • Cargill, H. K., Hawkes, L. &Ledeboer, J. A. (1928): The major intrusions of south-eastern Iceland. - Quarterly Jour. Geol. Soc. of London,84, 505–539.

    Google Scholar 

  • Carmichael, I. S. E. (1964): The petrology of Thingmuli, a tertiary volcano in eastern Iceland. - Jour. Petrol.,5, no. 3, 435–460.

    Google Scholar 

  • Carmody, R. W. (1991): Slaufrudalur stock of SE Iceland: geology, geochemistry and petrogenesis. - Unpublished Ph. D. Dissertation, Johns Hopkins University, 392 pp.

  • Cashman, K. V. &Marsh, B. D. (1988): Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization: II: Makaopuhi lava lake. - Contrib. Mineral. Petrol.,99, 292–305.

    Google Scholar 

  • Congdon, R. D. &Marsh, B. D. (1990): Generation of the pegmatitic transition zone in the Shonkin Sag laccolith, Montana. - In preparation.

  • - (1990): The solidification of the Shonkin Sag laccolith: mineralogy, petrology, and experimental phase equilibria. - Unpublished Ph. D. Dissertation, The Johns Hopkins University, 326 p.

  • Flower, M. F. J., Pritchard, R. G., Brem, G., Cann, J. R., Delaney, J., Emmerman, R., Gibson, I. L., Oakley, P. J., Robinson, P. T. &Omcle, H.-U SCJ, (1982): Chemical stratigraphy, Iceland research drilling project Reydarfjordur, eastern Iceland. -Jour. Geophys. Res.,87, no. B8, 6489–6510.

    Google Scholar 

  • Froelich, A. J. &Gottfried, D. (1988): An overview of early Mesozoic intrusive rocks in the Culpeper basin, Virginia and Maryland. - U.S. Geol. Surv. Bull.,1776, 151–175.

    Google Scholar 

  • Graham, C. M. (1974): Metabase amphiboles of the Scottish Dalradian. - Contrib. Mineral. & Petrol.,47, 165–185.

    Google Scholar 

  • Grapes, R. H. &Graham, C. M. (1978): The actinolite-hornblende series in metabasites and the so called miscibility gap: a review. - Lithos,11, 85–97.

    Google Scholar 

  • Gunn, B. M. (1966): Modal and element variation in Antarctic tholeiites. - Geochim. et Cosmochim. Acta,30, 881–920.

    Google Scholar 

  • Gunnarsson, B. (1987): Petrology and Petrogenesis of Silicic and Intermediate Lavas on a Propagating Oceanic Rift; the Torfajokull and Hekla Central Volcanoes, South-Central Iceland. Unpublished Ph. D. Disssertation, The Johns Hopkins University, 435 pp.

  • — &Marsh, B. D. (1988): Origin of oxygen isotope anomalies in Icelandic lavas: Part I. - Flank zone volcanoes, GSA Abstracts with Programs,20, A158.

    Google Scholar 

  • - &Marsh, B. D.(1991): Geology and petrology of postglacial silicic lavas from the SW part of the Torfajokull central volcano, Iceland. -Jour. Volcan. Geotherm. Res., submitted.

  • Hamilton, W. (1965): Diabase sheets of the Taylor glacier region Victoria Land, Antarctica. - U.S. Geol. Surv. Prof. Paper 456-B, 71 p.

  • Helz, R. T., Kirschenbaum, H. &Marinenko, J. W. (1989): Diapiric transfer of melt in Kilauea Iki lava lake, Hawaii: A quick, efficient process of igneous differentiation. - Geol. Soc. Amer. Bulletin,101, 578–594.

    Google Scholar 

  • Hergt, J. M., Chapell, B. W., McCulloch, M. T., McDougall, I. &Chivas, A. R. (1989): Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. - J. Petrol.30, 841–884.

    Google Scholar 

  • Hort, M. &Spohn, T. (1990): Numerical simulation of the crystallization of multicomponent melts in thin dikes or sills. 2. Effects of heterocatalytic nucleation and composition. -Jour. Geophys. Res.,96, 485–499.

    Google Scholar 

  • Hotz, P. E. (1953): Petrology of granophyre in diabase near Dillsburg, Pennsylvania. - Geol. Soc. Amer. Bull.,64, 675–704.

    Google Scholar 

  • Hurlbut, C. S. (1939): Igneous petrology of the Highwood Mountains, Montana. Part I: The laccoliths. - Geol. Soc. Amer. Bulletin,50, 1043–1112.

    Google Scholar 

  • Husch, J. M. (1990): Palisades sill: Origin of the olivine zone by separate magmatic injection rather than gravity settling.- Geology,18, 799–702.

    Google Scholar 

  • Ivey, G. N. &Blake, S. (1985): Axisymmetric withdrawal and inflow in a density-stratified container.- J. Fluid. Mech.,161, 115–137.

    Google Scholar 

  • Jaeger, J. C. (1968): Cooling and solidification of igneous rocks, in Basalts: The Poldervaart Treatise on Rocks of Basaltic Composition. (ed. H. H. Hess, A. Poldervaart), 862 pp.

  • Jakobsson, S. P. (1979): Petrology of recent basalts of the eastern volcanic zone, Iceland. - Acta Naturalia Islandica,26, 103 pp.

    Google Scholar 

  • —,Jonsson, J. &Shido, F. (1978): Petrology of the western Reykjanes Peninsula, Iceland. - J. Petrol.,19, 669–705.

    Google Scholar 

  • Johannesson, H. &Saemundsson, K. (1989): Geological map of Iceland. 1∶500.000. - Bedrock geology, Icelandic Museum of Natural History and Icelandic Geologic Survey, Reykjavik, 1st edition.

  • Kirkpatrick, R. J. (1976): Towards a kinetic model for the crystallization of magma bodies. - Jour. Geophys. Res.,81, no. 14, 2565–2571.

    Google Scholar 

  • — (1977): Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea Volcano, Hawaii.- Geol. Soc. Amer. Bulletin,88, 78–84.

    Google Scholar 

  • MacDonald, G. A.,Abbott, A. T. &Peterson, F. L. (1983): Volcanoes in the sea: Honolulu, University of Hawaii Press, 517 pp.

  • MacDonald, K. C. (1989a): Tectonic and magmatic processes on the East Pacific Rise. - In: The Geology of North America, Vol. N, The Eastern Pacific Ocean and Hawaii, p. 93–110.

    Google Scholar 

  • — (1989b): Anatomy of a magma reservoir. - Nature,339, 178–179.

    Google Scholar 

  • MacDonald, R., McGarvie, D. W., Pinkerton, H., Smith, R. L. &Palacz, Z. A. (1990): Petrogenetic evolution of the Torfajokull volcanic complex, Iceland I. Relationships between the magma types. - J. Petrol.,31, 429–459.

    Google Scholar 

  • —,Sparks, R. S. J., Sigurdsson, H., Mattey, D. P., McGarvie D. W. &Smith, R. L. (1987): The 1875 eruption of Askja volcano, Iceland: Combined fractional crystallization and selective contamination in the generation of rhyolitic magma. - Mineral. Mag.,51, no. 360, 183–202.

    Google Scholar 

  • MacLeod, N. S. (1981): Differentiation of a gabbro sill in the Oregon coast range by crystallization-zone settling. - U.S. Geol. Sur. Prof. Paper 1165, 22 p.

  • Mangan, M. T. &Marsh, B. D. (1991): Solidification front fractionation and the formation of basal cumulate zones in sheet-like magma bodies, GSA Bulletin, submitted.

  • — (1991): Crystal size distribution systematics and the determination of magma storage times: The 1959 eruption of Kilauea volcano. - Hawaii, Jour. Volcan. Geotherm. Res.,44, 295–302.

    Google Scholar 

  • Marsh, B. D. (1981): On the crystallinity, probability of occurrence, and rheology of lava and magma. - Contrib. Mineral. Petrol.,78, 85–98.

    Google Scholar 

  • — (1988a): Crystal capture, sorting, and retention in converting magma. - Geol. Soc. Amer. Bulletin,100, 1720–1737.

    Google Scholar 

  • — (1988b): Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. I. Theory. - Contrib. Mineral. Petrol.,99, 277–291.

    Google Scholar 

  • — (1989): Magma chambers. - Ann. Rev. Earth & Planet. Sciences,17, 439–474.

    Google Scholar 

  • — &Maxey, M. R. (1984): On the distribution and separation of crystals in convecting magma. - Jour. Volcan. and Geotherm. Res.,24, 95–150.

    Google Scholar 

  • Martin, D. &Nokes, M. (1988): Crystal settling in a vigorously convecting magma chamber. - Nature,332, 534–536.

    Google Scholar 

  • McDougall, I. (1962): Differentiation of Tasmanian dolerites: Red Hill dolerite granophyre association. - Geol. Soc. Amer. Bul.,73, 279–316.

    Google Scholar 

  • McGarvie, D. W., MacDonald, R., Pinkerton, H. &Smith, R. L. (1990): Petrogenetic evolution of the Torfajo-kull volcanic complex Iceland, II. The role of magma mixing. - Jour. Petrol.,90, 461–481.

    Google Scholar 

  • McKenzie, D. (1985): The extraction of magma from the crust and mantle, Earth & Planet. - Sci. Let.,74, 81–91.

    Google Scholar 

  • Moore, J. G. &Evans, B. W. (1967): The role of olivine in the crystallization of the prehistoric Makaophui tholeiitic lava lake, Hawaii. - Contrib. Mineral. Petrol.,15, 202–223.

    Google Scholar 

  • Mühlenbachs, K., Anderson, A. T. &Sigvaldason, G. E. (1974): Low18O basalts from Iceland. - Geochim. et Cosmochim. Acta72, 593–597.

    Google Scholar 

  • Myers, J. D. &Marsh, B. D. (1981): Geology and petrogenesis of the Edgecumbe Volcanic Field, SE Alaska: The interaction of basalt and silicic crust. - Contrib. Mineral Petrol.,77, 272–287.

    Google Scholar 

  • Oba, T. (1980): Phase relations in the tremolite-pargasite join. - Contrib. Mineral. Petrol.,71, 247–256.

    Google Scholar 

  • — &Yagi, K. (1987): Phase relations on the actinolite-pargasite join. - Jour. Petrol.,28, 23–36.

    Google Scholar 

  • Osborne, E. F. &Roberts, E. J. (1931): Differentiation in the Shonkin Sag laccolith. - Amer. Jour. Sci.,22, 331–353.

    Google Scholar 

  • Oskarssion, N., Sigvaldason, G. E. &Steinthorsson, S. (1982): A dynamic model of rift zone petrogenesis and the regional petrology of Iceland. - J. Petrol.,23, 28–74.

    Google Scholar 

  • —,Steinthorsson, S. &Sigvaldason, G. E. (1985): Iceland geochemical Anomaly: origin, volcanotectoniocs, chemical fractionation and isotope evolution of the crust. - J. Geophys. Res.,90, 10011–10025.

    Google Scholar 

  • Peck D. L. (1978): Cooling and vesiculation of Alae Lava Lake, Hawaii. - Geological Survey Professional Paper 935-B, 59 p.

  • Peterson, D. W. &Moore, R. B. (1987): Geologic history and evolution of geologic concepts, Island of Hawaii in Volcanism in Hawaii (ed. R. W. Decker, T. L. Wright and P. H. Stauffer), pp. 149–189.

  • Pirsson, L. V. (1905): Petrography and geology of the igneous rocks at the Highwood Mountains, Montana. - Geol. Survey Bulletin,237, no. 200, 1905.

  • Randolph, A. D. &Larson, M. A. (1971): Theory of particulars processes. - Academic Press, New York, 251 p.

    Google Scholar 

  • — &Larson, M. A. (1988): Theory of particulate processes. Second edition. - Academic Press, New York, 369 p.

    Google Scholar 

  • Riochter, D. H. &Moore, J. G. (1966): Petrology of Kilauea Iki lava lake, Hawaii. - U. S. Geol. Sure Prof. Paper 537- B, 26 p.

  • Roobol, M. J. (1969): The Vesturhorn acid - basic intrusion of S. E. Iceland. - Unpublished Ph. D. Dissertation, Imperial College, University of London, 177 pp.

  • — (1974): The geology of the Vesturhorn intrusion, S. E. Iceland. - Geol. Mag.,111, 273–286.

    Google Scholar 

  • Ryan, M. P. (1988): The mechanics and three dimensional internal structure of active magmatic systems: Kilauea Volcano. Hawaii. - Jour. Geophys. Res.,93, 4213–4248.

    Google Scholar 

  • Saemundsson, K. (1972): Jardfraediglefsur um Torfajokuls-svaedid (Notes on the geology of the Torfajokull central volcano).- Natturufraevingurinn,42, 81–99.

    Google Scholar 

  • — (1978): Fissure swarms and central volcanoes of the neovolcanic zones of Iceland. - Geol. Jour. Spec. Issue,10, 415–432.

    Google Scholar 

  • — (1979): Outline of the geology of Iceland. - Jokull,29, 7–28.

    Google Scholar 

  • - (1988): Torfajokulsoraefi, in Vordur a vegi, Arbok Ferdafelags Islands, p. 164–180 (in Icelandic).

  • Sigurdsson, H. (1968): Petrology of acid xenoliths from Surtsey. - Geol. Mag.105, 440–453.

    Google Scholar 

  • — (1977): Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer.- Nature,269, 25–28.

    Google Scholar 

  • — &Sparks, S. R. J. (1978): Lateral magma flow within rifted Icelandic crust.- Nature,274, 126–130.

    Google Scholar 

  • — — (1981): Petrology of rhyolitic and mixing magma ejecta from the 1875 eruption of Askja, Iceland. - J. Petrol.,22, 41–84.

    Google Scholar 

  • Spera, F. J. (1984): Some numerical experiments on the withdrawal of magma from crustal reservoirs. - Jour. Geophys. Res.,89, no. B 10, 8222–8236.

    Google Scholar 

  • —,Yuen, D. A., Greer, J. C. &Sewell G. (1986): Dynamics of magma withdrawal from stratified magma chambers. - Geology,14, 723–726.

    Google Scholar 

  • Spulber, S. D. &Rutherford, M. J. (1983): The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. - J. Petrol.,24, 1–25.

    Google Scholar 

  • Steinthorsson, S. (1987): Hradi landmyndunar og landeydingar. - Naturufraedingurinn,57, 81–95.

    Google Scholar 

  • Taylor, H. P. (1986): Igneous rocks: II. Isotopic case studies of Circumpacific Magmatism. - Rev. in Mineral.,16, 273–317.

    Google Scholar 

  • Tryggvason, E. (1974): Vertical crustal movement in Iceland. - In: Geodynamics of Iceland and the North Atlantic Area (Kristjansson, L. ed.), p. 241–262.

  • Walker, F. (1958): The causes of variation in dolente intrusions. - In: Dolerite: A symposium, pp. 1–25.

  • Walker, G. P. L. (1966): Acid volcanic rocks in Iceland. - Bull. Volcan.,29, 375–406.

    Google Scholar 

  • - (1974): The structure of eastern Iceland. - In: Geodynamics of Iceland and the North Atlantic area, (Kristjansson, L. ed.), p. 177–188.

  • Walker, R., Kirkpatrick, R. J., Longhi, J. &Hays, J. F. (1976): Crystallization history of lunar picritic basalt sample 12002: Phase-equilibria and cooling-rate studies. - GSA Bulletin,87, 646–656.

    Google Scholar 

  • Waters, A. C. (1948): Discussion in Origin of Granite, Conference at Geological Society of America meeting (J. Gilluly, Chairman), p. 104– 108.

  • Weinstein, S. A., Yuen, D. A. &Olson, P. L. (1987): Evolution of crystal settling in magma chamber convection. - Earth & Planet. Sci. Letters,87, 237–248.

    Google Scholar 

  • Wetzel, R.,Wenk, E.,Stern, W. &Schwander, H. (1978): Beiträge zur Retrographie Islands. - Vulkaninstitut. I. Friedlaender, Zürich, no. 10, 128 pp.

  • White, C. M., Geist, D. J., Frost, C. D. &Verwoerd, W. J. (1989): Petrology of the Bandfalsdalen macrodike, Skaergaard region, east Greenland. - J. Petrol.,30, 271–298.

    Google Scholar 

  • Wright, T. L. &Fiske, R. S. (1971): Origin of differentiated and hybrid lavas of Kilauea volcano, Hawaii.- Jour. Petrol.,12, 1–65.

    Google Scholar 

  • - &Okamura, R. T. (1977): Cooling and crystallization of tholeiitic basalt, 1965 Makaopuhi lava lake, Hawaii, U. S. Geol. Sure Prof. Paper 1004, 78 p.

  • -,Peck, D. L. &Shaw, H. R. (1976): Kilauea Lava Lakes. Natural laboratories for study of cooling, crystallization, and differentiation of basaltic magma. - In: The geophysics of the Pacific ocean basin and its margin, Geophysical Monograph 19, p. 375–3923.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, B.D., Gunnarsson, B., Congdon, R. et al. Hawaiian basalt and Icelandic rhyolite: Indicators of differentiation and partial melting. Geol Rundsch 80, 481–510 (1991). https://doi.org/10.1007/BF01829378

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01829378

Keywords

Navigation