Arkin, H. and Colton, R.R. (1963).*Tables for statisticians*, 2nd ed. New York: Barnes & Noble.

Arrow, K.J. (1963).*Social choice and individual values*, 2nd edition. New York: Wiley.

Black, D. (1958).*Theory of committees and elections*. Cambridge: Cambridge University Press.

Garman, B. and Kamien, M. (1968). The paradox of voting: Probability calculations.*Behavioral Science* 13: 306–316.

Gehrlein, W.V. (1981). The expected probability of Condorcet's paradox.*Economics Letters* 7: 33–37.

Gehrlein, W.V. (1983). Condorcet's paradox.*Theory and Decision* 15: 161–197.

Gehrlein, W.V. (1985). Condorcet efficiency of constant scoring rules for large electorates.*Economics Letters* 19: 13–15.

Kelly, J.S. (1978).*Arrow impossibility theorems*. New York: Academic Press.

Klahr, D. (1966). A computer simulation of the paradox of voting.*American Political Science Review* 60: 284–290.

Merrill, S. (1984). A comparison of efficiency of multicandidate electoral systems.*American Journal of Political Science* 28: 23–48.

Merrill, S. (1988).*Making multicandidate elections more democratic*. Princeton: Princeton University Press.

Nanson, E.J. (1883). Methods of elections. In*Transactions and proceedings of the Royal Society of Victoria*, Art. XIX: 197–240.

Niemi, R.G. and Weisberg, W.F. (1968). A mathematical solution for the probability of the paradox of voting.*Behavioral Science* 13: 317–323.

Niou, E.M.S. (1987). A note on Nanson's rule.*Public Choice* 54: 191–193.

Nurmi, H. (1985). Problems of voting procedure. In*Year Book 1984–1985*, Helsinki: Academia Scientiarum Fennica.

Nurmi, H. (1986). Mathematical models of elections and their relevance for institutional design.*Electoral Studies* 5: 167–181.

Nurmi, H. (1987).*Comparing voting systems*. Dordrecht: D. Reidel.

Nurmi, H. (1988). Discrepancies in the outcomes resulting from different voting schemes.*Theory and Decision* 25: 193–208.

Nurmi, H. (1989). On Nanson's method. In J. Paastela (Ed.),*Democracy in the modern world*. Tampere: Acta Universitatis Tamperensis.

Nurmi, H. (1990). Probability models in constitutional choice.*European Journal of Political Economy* 6: 107–117.

Richelson, J.T. (1979). A comparative analysis of social choice functions I, II, III: A summary.*Behavioral Science* 24: 355.

Riker, W.H. (1961). Voting and the summation of preferences.*American Political Science Review* 55: 900–911.

Riker, W.H. (1982).*Liberalism against populism*. San Francisco: Freeman.

Straffin, P.D. (1980).*Topics in the theory of voting*. Boston: Birkhäuser.

Todhunter, I. (1949).*A history of the mathematical theory of probability from the time of Pascal to that of Laplace*. New York: Chelsea Publishing Company (original 1865).

Weisberg, H.F. and Niemi, R.G. (1972). Probability calculations for cyclical majorities in congressional voting. In R.G. Niemi and H.F. Weisberg (Eds.),*Probability models of collective decision making*. Columbus, OH: Charles E. Merrill.

Wright, S.G. and Riker, W.H. (1989). Plurality and runoff systems and numbers of candidates.*Public Choice* 60: 155–175.