Skip to main content
Log in

MR T2-weighted image of subacute cerebral infarct can be isointense to the surrounding brain: MR fogging in cerebral infarct

  • Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Cerebral infarcts initially showing as markedly hyperintense on magnetic resonance (MR)T 2-weighted images decreased in intensity and became nearly isointense to normal brain tissue in subsequent MR studies. This MR fogging was observed in 7 (23%) out of 31 cases of cortical infarct and 4 (20%) out of 20 cases of perforator infarct in the second to sixth weeks of the disease. In all fogging cases, significant contrast enhancement (CE) was seen in the fogging area after intravenous administration of MR contrast agent. The CE study is recommended in MR of cerebral infarct during the subacute and early chronic stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker H, Desch H, Hacker H, Penz A (1979) CT fogging effect with ischemic cerebral infarcts.Neuroradiology 18: 185–192.

    PubMed  Google Scholar 

  2. Asato R, Okumura R, Konishi J (1991) “Fogging effect” in MR of cerebral infarct.J Comput Assist Tomogr 15: 160–162.

    PubMed  Google Scholar 

  3. Torigoe R, Harada K, Matsuo H (1990) Assessment of cerebral infarction by MRI: particularly fogging effect. Brain Nerve42: 547–552 [in Japanese].

    PubMed  Google Scholar 

  4. Yoshioka A, Hirose G, Kataoka S, Tsukada K, Oda R, Ito M (1988) The early diagnosis of ischemic cerebrovascular diseases by means of 0.5 tesla MRI. Prog CT10: 381–388 [in Japanese].

    Google Scholar 

  5. Brand-Zawadzki M (1988) Ischemia. InMagnetic Resonance Imaging. (Stark DD, Bradley WG, eds), pp. 299–315. St. Louis, MO: C.V. Mosby Company.

    Google Scholar 

  6. Hecht-Leavitt C, Gomori JM, Grossman RL Goldberg HI, Hackney DB, Zimmerman RA et al (1986) High-field MRI of hemorrhagic cortical infarction.Am J Nucl Reson 7: 581–585.

    Google Scholar 

  7. Nabatame H, Fujimoto N, Nakamura K, Imura Y, Dodo Y, Fukuyama H et al. (1990) High intensity areas on noncontrast Tl-weighted MR images in cerebral infarction.J Comput Assist Tomogr 14: 521–526.

    PubMed  Google Scholar 

  8. Bradley WG (1988) MRI of hemorrhage and iron in the brain. In Magnetic Resonance Imaging. (Stark DD, Bradley WG, eds) pp. 359–374. St. Louis, MO: C.V. Mosby Company.

    Google Scholar 

  9. Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT (1985) Intracranial hematoma: Imaging by high-field MR.Radiology 157: 87–93.

    PubMed  Google Scholar 

  10. Brierley JB, Graham DI (1984) Hypoxia and vascular disorders of the central nervous system. InGreenfield's Neuropathology. (Adams JH, Corsellis JAN, Duchen LW, eds) pp. 125–207. New York: John Wiley & Sons.

    Google Scholar 

  11. Garcia JH, Anderson ML (1991) Circulatory disorders and their effects on the brain. InTextbook of Neuropathology. (Davis RL, Robertson DM, eds) pp. 621–718. Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  12. Asato R, Murata T, Mori K, Handa H (1981) NMR: its application to the experimental study of hydrocephalus and brain edema.Brain Nerve 33: 603–609 [in Japanese].

    PubMed  Google Scholar 

  13. Asato R, Handa H, Hashi T, Hatta J, Komoike M, Yazaki T (1983) Chronological sequences and blood-brain barrier permeability changes in local injury as assessed by nuclear magnetic resonance (NMR) images from sliced rat brain.Stroke 14: 191–197.

    PubMed  Google Scholar 

  14. DeWitt LD, Kistler JP, MiUer DC, Richardson Jr. EP, Buonanno FS (1987) NMR-neuropathologic correlation in stroke.Stroke 18: 342–351.

    PubMed  Google Scholar 

  15. Asato R, Konishi J (1990) NMR tissue characterization of the central nervous system: normal and pathologic state. Shinkei Kenkyu Shinpo34: 792–806 [in Japanese].

    Google Scholar 

  16. Brindle KM, Brown FF, Campbell ID (1979) Application of spin-echo nuclear magnetic resonance to whole-cell system.Biochem J 180: 37–44.

    PubMed  Google Scholar 

  17. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field.Biochim Biophys Acta 714: 265–270.

    PubMed  Google Scholar 

  18. Fazio C (1949) Red softening of the brain.J Neuropathol Exp Neurol 8: 43–60.

    Google Scholar 

  19. Fisher M, Adams RD (1951) Observations on brain empolism with special reference to the mechanism of hemorrhagic infarction.J Neuropathol Exp Neurol 10: 92–94.

    PubMed  Google Scholar 

  20. Olsen TS, Larsen B, Skriver EB, Herning M, Enevoldsen E, Lassen NA (1981) Focal cerebral hyperemia in acute stroke.Stroke 12: 598–607.

    PubMed  Google Scholar 

  21. Henkelman RM, Watts JF, Kucharczyk W (1991) High signal intensity in MR images of calcified brain tissue.Radiology 179: 199–206.

    PubMed  Google Scholar 

  22. Kulisevsky J, Ruscalleda J, Grau JM (1991) MR imaging of acquired hepatocerebral degeneration.Am J Nucl Radiol 12: 527–528.

    Google Scholar 

  23. Zülch K (1985) Cerebral infarcts and computed tomo-grams. InThe Cerebral Infarct. (Zülch K, ed) pp. 1–20.Pathology, Pathogenesis, and Computed Tomography. Berlin: Springer-Verlag.

    Google Scholar 

  24. New PFJ, Aronow S (1976) Attenuation measurements of whole blood and blood fraction in computed tomography.Radiology 121: 635–640.

    PubMed  Google Scholar 

  25. Norman D, Price D, Boyd D, Fishman R, Newton TH (1977) Quantitative aspects of computed tomography of the blood and cerebrospinal fluid.Radiology 123: 335–338.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asato, R., Okumura, R., Miki, Y. et al. MR T2-weighted image of subacute cerebral infarct can be isointense to the surrounding brain: MR fogging in cerebral infarct. MAGMA 2, 539–544 (1994). https://doi.org/10.1007/BF01766089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01766089

Keywords

Navigation