Skip to main content
Log in

Glutamate dehydrogenases from chlorella: Forms, regulation and properties

  • Review and General Articles
  • a. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Despite the great physiological importance of glutamate dehydrogenases (GDHs) fromChlorella, practically no pertinent data were available until 1965. We made an attempt to fill the gap and to determine the forms of GDH present inChlorella cells, the dependence of their synthesis on the nitrogen source, their physico-chemical and kinetic properties and their functional features in the cell. The thermophilic strainChlorella pyrenoidosa Pringsheim 82 T was selected for this purpose because it was shown to have both NAD- and NADP-GDH activities, the NADP-GDH activity being much higher under conditions of NH +4 assimilation than in NO -3 assimilation. Our findings allow the following conclusions to be made:

  1. (1)

    The genome ofCh.pyrenoidosa Pr. 82 T contains information required for the synthesis of three GDHs depending on the environmental conditions. One GDH which is active with both cofactors NAD(P)-GDH is synthesized in the constitutive way, another, NADP-specific GDH, is synthesizedde novo under the influence of NH +4 , and the third GDH, also NADP-specific, is synthesized during NH +4 assimilation only in cells rich in glycolytic products.

  2. (2)

    Constitutive and NH +4 -inducible GDHs were separated and obtained in homogeneous and highly purified states, respectively.

  3. (3)

    Constitutive GDH is a hexamer of 6 × 49,000± 1,000 with a rigid stable structure.

    Inducible GHD is an allosteric enzyme with a very labile structure. Its allosteric activator is NADPH. This enzyme is characterized by slow conformational transformations (isomerization) that accompany transition from inactive (low activity) to active state. SH-groups play a major role in this change.

  4. (4)

    Constitutive GDH is characterized by unidirectional inhibition by p-chloro-mercuribenzoate (PCMB).

  5. (5)

    Inducible GDHin vivo functions mainly in the direction of synthesis of glutamate.

    Possible localization and pattern of action of constitutive GDH are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Romanov, V. I., Evstigneeva, Z. G. and Kretovich, W. L., 1965. Prikladnaja Biochimija i Microbiol., I, 494–499.

    Google Scholar 

  2. Syrett, P. J., 1962. In “Physiol. and Biochem. of Algae” (R. A. Levin, ed.), Acad. Press.

  3. Backer, J. E. and Thompson, J. F., 1961. Plant Physiol., 36, 208–212.

    Google Scholar 

  4. Morris, I. and Syrett, P. J., 1965. J. Gen. Microbiol., 38, 21–28.

    Google Scholar 

  5. Syrett, P. J. and Morris, I., 1963. Biochim. Biophys. Acta, 67, 566–575.

    Google Scholar 

  6. Berger, Ch., 1966. Flora, Abt. A, 157, 211–232.

    Google Scholar 

  7. Huth, W., 1967. Flora, Abt. A, 158, 58–87.

    Google Scholar 

  8. Kretovich, W. L., Evstigneeva, Z. G. and Tomova, N. G., 1970. Can. J. Bot., 48, 1179–1183.

    Google Scholar 

  9. Kretovich, W. L., Tomova, N. G. and Evstigneeva, Z. G., 1970. Biochimija, 35, 278–282.

    Google Scholar 

  10. Casselton, P. J., 1969. Sci. Prog., 57, 207–227.

    Google Scholar 

  11. Olson, J. A. and Anfinsen, Ch. B., 1953. J. Biol. Chem., 202, 841–856.

    Google Scholar 

  12. Shatilov, V. R., Evstigneeva, Z. G. and Kretovich, W. L., 1969. Biochimija, 34, 409–416.

    Google Scholar 

  13. Shatilov, V. R., Ambartzumjan, V. G. and Kretovich, W. L., 1972. Doklady Akademii Nauk SSSR, 207, 1229–1232.

    Google Scholar 

  14. Shatilov, V. R., Kasparova, M. A., Ambartzumjan, V. G. and Kretovich, W. L., 1975. Biochimija, 40, 1237–1245.

    Google Scholar 

  15. Talley, D. J., White, L. H. and Schmidt, R. R., 1972. J. Biol. Chem., 247, 7927–7935.

    Google Scholar 

  16. Shatilov, V. R., Kaloshina, G. S. and Kretovich, W. L., 1970. Doklady Akademii Nauk SSSR, 194, 964–966.

    Google Scholar 

  17. Wankova, R. V., Shatilov, V. R., Ambartzumjan, V. G. and Kretovich, W. L., 1973. Doklady Akademii Nauk SSSR, 210, 228–231.

    Google Scholar 

  18. Shatilov, V. R., Wankova, V. R., Ambartzumjan, V. G. and Kretovich, W. L., 1972. Doklady Akademii Nauk SSSR, 207, 476–479.

    Google Scholar 

  19. Shatilov, V. R., Ambartzumjan, V. G. and Kretovich, W. L., 1974. Biochimija, 39, 571–576.

    Google Scholar 

  20. Weber, K. and Osborn, M., 1969. J. Biol. Chem., 244, 4406–4412.

    Google Scholar 

  21. Loseva, L. P., Shatilov, V. R., Sof'in, A. V. and Kretovich, W. L., 1976. Doklady Akademii Nauk SSSR, 232, 703–706.

    Google Scholar 

  22. Eisenberg, H. and Tomkins, G. M., 1968. J. Mol. Biol., 31, 37–49.

    Google Scholar 

  23. Kielley, W. W. and Harrington, W. F., 1960. Biochim. Biophys. Acta, 41, 401–421.

    Google Scholar 

  24. Smith, E. L., London, M., Piskiewich, D., Brattin, W. J., Langley, T. J. and Melamed, M. D., 1970. Proc. Nat. Acad. Sci. USA, 67, 724–730.

    Google Scholar 

  25. Venard, R. and Fourcade, A., 1973. Biochimie, 54, 1381–1389.

    Google Scholar 

  26. Blumenthal, K. M. and Smith, E. L., 1973, J. Biol. Chem., 248, 6002–6008.

    Google Scholar 

  27. Sakamoto, M., Kotre, A.-M. and Savageau, M. A., 1975. J. Bacteriol., 124, 775–783.

    Google Scholar 

  28. Yarrison, G., Young, D. W. and Choules, G. L., 1972. J. Bacteriol., 110, 494–503.

    Google Scholar 

  29. Veronese, F. M., Nye, J. F., Degani, J., Brown, D. M. and Smith, E. L., 1974. J. Biol. Chem., 249, 7922–7928.

    Google Scholar 

  30. Grisolia, Santjago, 1964. Physiol. Rev., 44, 657–712.

    Google Scholar 

  31. Kurganov, B. I., 1975. In “Allostericheskie Fermenti”, ser. Biol. Chimija (W. L. Kretovich, ed.), 8, 57–109, Moscow.

  32. Teipel, J. and Koshland Jr., D. E., 1969. Biochemistry, 8, 4656–4663.

    Google Scholar 

  33. Koshland Jr., D. E., Nemethy, G. and Filner, D., 1966. Biochemistry, 5, 365–385.

    Google Scholar 

  34. Koshland Jr., D. E., 1970. In “The Harvey-Lectures 1969–70“, ser. 65, 33–59 Acad. Press, N.-Y., L.

    Google Scholar 

  35. Goldstein, B. N., Livschitz, M. A. and Volkenstein, M. V., 1974. Molekuljarnaja Biologija, 8, 784–791.

    Google Scholar 

  36. Shatilov, V. R., Ambartzumjan, V. G., Kasparova, M. A. and Kretovich, W. L., 1974. Doklady Akademii Nauk SSSR, 215, 1496–1497.

    Google Scholar 

  37. Frieden, C., 1970. J. Biol. Chem., 245, 5788–5799.

    Google Scholar 

  38. Alpers, J. B. and Paulus, H., 1971. Nature, 233, 478–480.

    Google Scholar 

  39. Shatilov, V. R., Ambartzumjan, V. G., Kasparova, M. A. and Kretovich, W. L., 1974, Doklady Akademii Nauk SSSR, 216, 223–225.

    Google Scholar 

  40. Sanner, T., 1972. Biochim. Biophys. Acta, 258, 689–700.

    Google Scholar 

  41. LéJohn, H. B., 1968. J. Biol. Chem., 243, 5126–5131.

    Google Scholar 

  42. LéJohn, H. B., Stevenson, R. M. and Menser, R., 1970, J. Biol. Chem., 245, 5569–5576.

    Google Scholar 

  43. LéJohn, H. B. and Stevenson, R. M., 1970. J. Biol. Chem., 245, 3890–3900.

    Google Scholar 

  44. Fourcade, A. and Venard, R., 1971. Biochim. Biophys. Acta, 242, 331–344.

    Google Scholar 

  45. Setchenska, M. S., Vassileva-Popova, J. G. and Russanov, E. M., 1975. FEBS Lett., 60, 129–132.

    Google Scholar 

  46. Do Nascimento, K. H., Davies, D. D. and Patil, K. D., 1975. Biochem. J., 149, 349–355.

    Google Scholar 

  47. Penefsky, H. S., 1974, J. Biol. Chem., 249, 3579–3585.

    Google Scholar 

  48. Evans, H. J. and Sorger, G. J., 1966. Ann. Rev. Plant Physiol., 17, 47–76.

    Google Scholar 

  49. Ramasastry, P. and Meryman, H. T., 1973. Fed. Proc. Abstr. of the 57th Ann. Meet., 32, part I, abstr. 1834, Atl. City, April.

  50. Shatilov, V. R., Kasparova, M. A. and Kretovich, W. L., 1976. Biochimija, 41, 1636–1640.

    Google Scholar 

  51. Shich, Y. J. and Barber, J., 1971. Biochim. Biophys. Acta, 233, 594–603.

    Google Scholar 

  52. Kaplan, N. P., 1963, Bacteriol. Revs., 27, 155–169.

    Google Scholar 

  53. Cantino, E. C. and Horenstein, E. A., 1956, Mycologia, 48, 777–799.

    Google Scholar 

  54. LéJohn, H. B. and Jackson, S., 1968, J. Biol. Chem., 243, 3447–3457.

    Google Scholar 

  55. Sanner, T., 1972. Abstr. 8th Meet. FEBS, abstr. 246, Amsterdam, August.

  56. Tomova, N. G., Evstigneeva, Z. G. and Kretovich, W. L., 1968. Izvestija Acad. Nauk SSSR, ser. biol., 3, 431–444.

    Google Scholar 

  57. Shatilov, V. R., Evstigneeva, Z. G. and Kretovich, W. L., 1968, Doklady Academii Nauk SSSR, 178, 482–484.

    Google Scholar 

  58. Millbank, J. W., 1953. Nature, 171, 476–477.

    Google Scholar 

  59. Shatilov, V. R., Kasparova, M. A. and Kretovich, W. L., 1974. Doklady Academii Nauk SSSR, 219, 1014–1016.

    Google Scholar 

  60. Shatilov, V. R., Geiko, N. S., Evstigneeva, Z. G. and Kretovich, W. L., 1967. Doklady Academii Nauk SSSR, 172, 731–732.

    Google Scholar 

  61. Millbank, J. W., 1957. Ann. Bot., N.S., 21, 23–31.

    Google Scholar 

  62. Kanazawa, T., Kirk, M. R. and Bassham, J. A., 1970. Biochim. Biophys. Acta, 205, 401–408.

    Google Scholar 

  63. Kanazawa, T., Kanazawa, K., Kirk, M. R. and Bassham, J. A., 1972. Biochim. Biophys. Acta, 256, 656–669.

    Google Scholar 

  64. Losada, M., Herrera, J., Maldonado, J. M. and Paneque, A., 1973. Plant Sci. Lett., I, 31–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A submitted article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shatilov, V.R., Kretovich, W.L. Glutamate dehydrogenases from chlorella: Forms, regulation and properties. Mol Cell Biochem 15, 201–212 (1977). https://doi.org/10.1007/BF01734109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01734109

Keywords

Navigation