Journal of Neurocytology

, Volume 16, Issue 6, pp 871-881

First online:

Demyelination in canine distemper encephalomyelitis: An ultrastructural analysis

  • Brian A. SumummersAffiliated withDepartment of Pathology, New York State College of Veterinary Medicine, Cornell University
  • , Max J. G. AppelAffiliated withDepartment of Microbiology (James A. Baker Institute), New York State College of Veterinary Medicine, Cornell University

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A morphological study of selected white matter lesions was carried out in three dogs with canine distemper encephalomyelitis. Two dogs had experimental infections while the third was a spontaneous case. Two stages were identified in the process of demyelination. The earliest evidence of myelin injury was a ballooning change in myelin sheaths involving single or multiple axons. This was followed by a progressive stripping of compact sheaths by the cytoplasmic fingers of phagocytic cells which infiltrated and removed myelin lamellae. Some axonal necrosis also accompanied these changes. Where demyelination occurred, canine distemper viral nucleocapsids were found in astrocytes, macrophages, ependymal cells and infiltrating lymphocytes. In contrast, oligodendrocytes were conspicuous by their apparent lack of infection. Thus it seems that myelin loss cannot be ascribed to oligodendrocyte infection. Perturbed astrocyte function following canine distemper viral infection may cause oedema of myelin sheaths, leading to ballooning and primary demyelination. Cells which phagocytosed myelin were mainly identified as microglial cells with lesser involvement by astrocytes. Rarely, oligodendrocytes also acted as macrophages. Myelin debris was engulfed in bulk or as small droplets into coated pits. Remyelination was present in established plaques although not in great abundance, perhaps due to the diminished oligodendrocyte numbers and a relative increase in immature forms of these cells. These observations are compared to similar changes observed in other demyelinating diseases of animals and man.