[1]

A.V. Aho, J.E. Hopcroft and J.D. Ullman,*The Design and Analysis of Computer Algorithms* (Addison-Wesley, Reading, MA, 1974).

[2]

M.R. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest and R.E. Tarjan, “Time bounds for selection,”*Journal of Computer and System Sciences* 7(4) (1972) 448–461.

[3]

P. Brucker, “An O(*n*) algorithm for quadratic knapsack problems,”*Operations Research Letters* 3 (1984) 163–166.

[4]

P.H. Calamai and J.J. Moré, “Quasi-Newton updates with bounds,”*SIAM Journal on Numerical Analysis* 24 (1987) 1434–1441.

[5]

N.J. Driebeek, “An algorithm for the solution of mixed integer programming problems,”*Management Science* 12 (1966) 576–587.

[6]

A.M. Geoffrion and R.E. Marsten, “Integer programming algorithms: A framework and state of the art survey,”*Management Science* 18 (1972) 465–491.

[7]

M. Held, P. Wolfe and H. Crowder, “Validation of subgradient optimization,”*Mathematical Programming* 6 (1974) 62–88.

[8]

R. Helgason, J. Kennington and H. Lall, “A polynomially bounded algorithm for a singly constrained quadratic program,”*Mathematical Programming* 18 (1980) 338–343.

[9]

R.R. Meyer, “Multipoint methods for separable nonlinear networks,”*Mathematical Programming Study* 22 (1984) 185–205.

[10]

P.M. Pardalos and J.B. Rosen, “Constrained global optimization: Algorithms and applications,” in:*Lecture Notes in Computer Science, Vol. 268* (Springer, Berlin, 1987).

[11]

P.M. Pardalos and J.B. Rosen, “Methods for global concave minimization: A bibliographic survey,”*SIAM Review* 28(3) (1986) 367–379.

[12]

J.B. Rosen and P.M. Pardalos, “Global minimization of large-scale constrained concave quadratic problems by separable programming,”*Mathematical Programming* 34 (1986) 163–174.

[13]

L. Schrage,*Linear Integer and Quadratic Programming with LINDO* (Scientific Press, Palo Alto, CA, 1984).