Skip to main content
Log in

An analysis of the effect of the solid layer for the modified chemical vapor deposition process

Untersuchung des Einflusses der Feststoffschicht auf den modifizierten chemischen Aufdampfprozeß

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The heat transfer problem relative to the modified chemical vapor deposition process has been analyzed and the effects of solid layer thickness, torch speed and tube rotation are studied. The quasi-steady three-dimensional energy equations have been solved for the temperature fields in the gas and the solid layer with a Gaussian heat flux boundary condition on the outer surface. Of particular interest is the effect of the solid layer thickness and the torch speed on inner surface temperature, gas temperature and thermophoretic velocity. The large change of the axial temperature distribution of the surface occurs for different solid layer thicknesses or torch speeds. The presence of the solid layer and tube rotation reduce the effects of nonuniform torch heating in the circumferential direction and the resulting surface temperatures are very uniform in this direction.

Zusammenfassung

Es wurde das Wärmeübergangsproblem beim modifizierten chemischen Aufdampfprozeß untersucht, und zwar im Hinblick auf die Einflüsse bezüglich Feststoffdichtdicke, Brennergeschwindigkeit und Rohrrotation. Die Lösung der quasistationären dreidimensionalen Energiegleichungen für die Temperaturfelder im Gas und in der Feststoffschicht erfolgte unter Ausprägung einer Gaußschen Wärmefluß-Randbedingung am Außenumfang. Von besonderem Interesse ist der Einfluß der Feststoffschichtdicke und der Brennergeschwindigkeit auf die Temperaturverteilung am Innenumfang, die Gastemperatur und die Thermophoresegeschwindigkeit. Starke Änderungen der achsialen Temperaturverteilung am Innenumfang resultieren sowohl aus verschiedenen Feststoffschichtdicken wie Brennergeschwindigkeiten. Zunehmende Schichtdicke und Rohrrotation reduzieren den Einfluß ungleichförmiger Aufheizung durch den Brenner in Umfangrichtung und bewirken dort eine sehr gleichförmige Oberflächentemperatur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A (\(\tilde r\)):

polynomial in Eq. (7)

A j :

coefficients ofA(\(\tilde r\)) in Eq. (7)

C 1,2 :

coefficients in Eq. (11)

h :

heat transfer coefficient

H :

dimensionless temperature =\(\frac{{T - T_\infty }}{{T_\infty }}\)

H j :

coefficients in Eq. (8)

i :

√−1

J n :

Bessel functions of first kind of ordern

k :

thermal conductivity

K :

thermophoretic coefficient

n :

Fourier Mode

Pe :

Peclet number,V av R 0 /α

q wall :

applied heat flux on the outer surface

q max :

maximum value of the applied heat flux,q wall

Q :

gas flow rate

r :

radial coordinate

R i :

inner tube radius

R 0 :

outer tube radius

\(\hat r\) :

dimensionless variable defined in Eq. (10)

t :

time

T :

temperature

T rxn :

reaction temperature

V torch :

torch speed

V av :

average velocity of gas in the axial direction

(V T ) r :

thermophoretic velocity in the radial direction

x :

axial coordinate

Y n :

Bessel functions of second kind of ordern

z :

complex transformed coordinate

α :

thermal diffusivity

β :

exponent in Eq. (8) (=n)

Γ :

rotation parameter,R 0 Ω /V av

θ :

angle

ϱ :

density

λ 1 :

parameter in torch heating distribution (axial)

λ 2 :

parameter in torch heating distribution (circumferential)

ν :

kinematic viscosity

ζ :

moving coordinate,xV torch t

Ω :

angular velocity of tube

g :

gas

imag:

imaginary part

∞:

ambient

real:

real part

s :

solid layer

∼:

dimensionless

=:

double transformation

-:

transformed, after Fourier inversion

References

  1. MacChesney, J. B.; O'Connor, P. B.; DiMarcello, F. V.; Simpson, J. R.; Lazay, P. D. 1974a: Preparational low-loss optical fibers using simultaneous vapor phase deposition and fusion. Proc. 10th Proc. Int. Congr. Glass. 10th, Kyoto, Japan, pp. 6-40–6-44

  2. MacChesney, J. B.; O'Connor, P. B.; Presby, H. M. 1974b: A new technique for preparation of low-loss and graded index optical fibers. Proc. IEEE 62, 1278–1279

    Google Scholar 

  3. Nagei, S. R.; MacChesney, J. B.; Walker, K. L. 1982: An overview of the modified chemical vapor deposition (MCVD) Process and Performance. IEEE J. Quantum Electronics QE-18, 459–476

    Google Scholar 

  4. Simpkins, P. G.; Kosinski, S. G.; MacChesney, J. B. 1979: Thermophoresis: The mass transfer mechanism in modified chemical vapor deposition. J. Appl. Physics 50, 5676–5681

    Google Scholar 

  5. Walker, K. L.; Homsy, G. M.; Geyling, F. T. 1979: Thermophoretic deposition of small particles in laminar tube flow. J. Colloid Interface Sci. 69, 138–147

    Google Scholar 

  6. Walker, K. L.; Geyling, F. T.; Nagel, S. R. 1980: Thermophoretic deposition of small particles in the modified chemical vapor deposition (MCVD) process. J. Am. Ceram. Soc. 63, 552–558

    Google Scholar 

  7. Wang, C. Y.; Morse, T. F.; Cipolla, Jr. J. W. 1985: Laser induced natural convection and thermophoresis. ASME J. Heat Transfer 107, 161–167

    Google Scholar 

  8. DiGiovanni, D.; Wang, C. Y.; Morse, T. F.; Cipolla, Jr. J. W. 1985: Laser induced buoyancy and forced convection in vertical tubes. Natural Convection: Fundamentals and Applications (Eds.: S. Kakac, W. Aung, R. Viskanta) New York: Hemisphere, 1118–1139

    Google Scholar 

  9. Morse, T. F.; DiGiovanni, D.; Chen, Y. W.; Cipolla, Jr. J. W. 1986: Laser enhancement of thermophoretic deposition process. J. of Lightwave Technology, LT-4, No. 2, Feb. 1986, pp. 151–155

    Google Scholar 

  10. Fiebig, M.; Hilgenstock, M.; Riemann, H.-A. 1988: The modified chemical vapor deposition process in a concentric annulus. Aerosol Science and Technology 9, 237–249

    Google Scholar 

  11. Choi, M.; Baum, H. R.; Greif, R. 1987: The heat transfer problem during the modified chemical vapor deposition process. ASME J. Heat Transfer 109, 642–646

    Google Scholar 

  12. Kim, K. S.; Pratsinis, S. E.; 1988: Manufacture of optical waveguide preforms by modified chemical vapor deposition. AIChE J. 34, 912–920

    Google Scholar 

  13. Choi, M.; Greif, R.; Baum, H. R. 1989: A study of heat transfer and particle motion relative to the modified chemical vapor deposition process. ASME J. Heat Transfer 111, 1031–1037

    Google Scholar 

  14. Choi, M.; Lin, Y. T.; Greif, R. 1990: Analysis of buoyancy and tube rotation relative to the modified chemical vapor deposition process. ASME J. Heat Transfer 112, 1063–1069

    Google Scholar 

  15. Lin, Y. T.; Choi, M.; Greif, R. 1991: A three dimensional analysis of the flow and heat transfer for the modified chemical vapor deposition process including buoyancy, variable properties and tube rotation. ASME J. Heat Transfer 113, 400–406

    Google Scholar 

  16. Lin, Y. T.; Choi, M.; Greif, R. 1992: A three dimensional analysis of particle deposition for the modified chemical vapor deposition (MCVD) Process. ASME J. Heat Transfer 114, 735–742

    Google Scholar 

  17. Metais, B.; Eckert, E. G. 1964: Forced, mixed and free convection regimes, ASME J. Heat Transfer 86, 295–297

    Google Scholar 

  18. Farouk, B. and Ball, K. S. 1985: Convective flows around a rotating isothermal cylinder. Int. J. Heat Mass Transfer 28, 1921–1935

    Google Scholar 

  19. Talbot, L.; Cheng, R. K.; Schefer, R. W.; Willis, D. R. 1980: Thermophoresis of particles in a heated boundary layer. J. Fluid Mech., 101, 737–758

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y.T., Choi, M. & Greif, R. An analysis of the effect of the solid layer for the modified chemical vapor deposition process. Warme - Und Stoffubertragung 28, 169–176 (1993). https://doi.org/10.1007/BF01541187

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01541187

Keywords

Navigation