Skip to main content
Log in

Sequence evolution of theGpdh gene in theDrosophila virilis species group

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The nucleotide sequence of theGpdh gene from six taxa,D. virilis, D. lummei, D. novamexicana, D. a. americana, D. a. texana andD. ezoana, belonging to thevirilis species group was determined to examine details of evolutionary change in the structure of theGpdh gene. TheGpdh gene is comprised of one 5′ non-translated region, eight exons, seven introns and three 3′ non-translated regions. Exon/intron organization was identical in all the species examined, but different from that of mammals. Interspecific nucleotide divergence in the entireGpdh gene followed the common pattern: it was low in the exon, high in the intron and intermediate in the non-translated regions. The degree of nucleotide divergence differed within these regions, suggesting that selection exerts constraints differentially on nucleotide change of theGpdh gene. A phylogenetic tree of thevirilis phylad constructed from nucleotide variation of total sequence was consistent with those obtained from other data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, K., H. Tominaga, Y. Yokote & S. Nariss, 1988. The complete amino acid sequence of cytoplasmic glycerol-3-phosphate dehydrogenase fromDrosophola virilis. Biochim. Biophys. Acta 953: 6–13.

    Google Scholar 

  • Cook, J.L., G.C. Bewley & J.B. Shaffer, 1988.Drosophila sn-glycerol-3-phosphate dehydrogenase isozymes are generated by alternate pathways of RNA processing resulting in different carboxyl-terminal amino acid sequences. J. Biol. Chem. 263: 10858–10864.

    PubMed  Google Scholar 

  • Fitch, W.M., 1977. On the problem of discovering the most parsimonious tree. Amer. Natur. 111: 223–257.

    Google Scholar 

  • Hansfold, R.G. & B. Sacktor, 1971. Oxidative metabolism of insecta. pp. 213–247 in Chemical Zoology Vol. 6, edited by M. Florkin & B.T. Scheer, Academic Press, New York.

    Google Scholar 

  • Heberlein, U. & G.M. Rubin, 1990. Structural and functional comparisons of theDrosophila virilis andDrosophila melanogaster rough genes. PNAS, U.S.A. 87: 5916–5920.

    Google Scholar 

  • Henikoff, S., 1987. Unidirectional digestion with exonuclease III in DNA sequence analysis. pp. 156–165 in Methods in Enzymology Vol. 155, edited by R. Wu, Academic Press, New York.

    Google Scholar 

  • Higgins, D.G. & P.M. Sharp, 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244.

    PubMed  Google Scholar 

  • Hultmark, D., R. Klemenz & W.J. Gehring, 1986. Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell 44: 429–438.

    PubMed  Google Scholar 

  • Ireland, R.C., M.A. Kotarski, L.A. Johnston, U. Stadler, E. Birkenmeier & L.P. Kozak, 1986. Primary structure of the mouse glycerol-3-phosphate dehydrogenase gene. J. Biol. Chem. 261: 11779–11785.

    PubMed  Google Scholar 

  • Jukes, T.H. & C.R. Cantor, 1969. Evolution of protein molecules. pp. 21–132 in Mammalian Protein Metabolism edited by H.N. Munro, Academic Press, New York.

    Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    PubMed  Google Scholar 

  • Kozak, L.P. & J.T. Jensen, 1974. Genetic and developmental control of multiple forms of L-glycerol 3-phosphate dehydrogenase. J. Biol. Chem. 249: 7775–7781.

    PubMed  Google Scholar 

  • Narise, S., 1980. Purification and biochemical properties of allelic forms of cytoplasmic glycerol-3-phosphate dehydrogenase fromDrosophila virilis. Biochim. Biophys. Acta 615: 289–298.

    PubMed  Google Scholar 

  • Narise, S. & H. Tominaga, 1992. Temperature-dependency differences in αGpdh allozymes associated with a single base change in the coding region of the αGpdh structural gene inDrosophila virilis. Biochem. Genet. (Life Sci. Adv.) 11: 39–45.

    Google Scholar 

  • Nei, M. & T. Gojobori, 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418–426.

    PubMed  Google Scholar 

  • O'Brien, S.J. & R.J. MacIntyre, 1972. The α-glycerophosphate inDrosophila melanogaster II. Genetic aspects. Genetics 71: 127–138.

    PubMed  Google Scholar 

  • Ostro, M.J. & T.P. Fondy, 1977. Isolation and characterization of multiple molecular forms of cytosolic NAD-linked glycerol-3-phosphate dehydrogenase from normal and neoplastic rabbit tissues. J. Biol. Chem. 252: 5575–5583.

    PubMed  Google Scholar 

  • Reinbold, S. & G.E. Collier, 1990. Molecular systematics of theDrosophila virlis species group (Diptera: Drosophilidae). Ann. Entomol. Soc. Amer. 83: 467–474.

    Google Scholar 

  • Ross, C.R., S. Curry, A.W. Schwartz & T.P. Fondy, 1971. Multiple molecular forms of cytoplasmic glycerol-3-phosphate dehydrogenase in rat liver. Arch. Biochem. Biophys. 145: 591–603.

    PubMed  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Sanger, F., S. Nicklen & A.R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. PNAS U.S.A. 74: 5463–5467.

    Google Scholar 

  • Spicer, G.S., 1991. Molecular evolution and phylogeny of theDrosophila virilis species group as inferred by two-dimensional electrophoresis. J. Mol. Evol. 33: 379–394.

    PubMed  Google Scholar 

  • Spicer, G.S., 1992. Reevaluation of the phylogeny of theDrosophila virilis species group (Diptera: Drosophilidae). Ann. Entomol. Soc. Amer. 85: 11–25.

    Google Scholar 

  • Throckmorton, L.H., 1982. Thevirilis species group. pp. 227–296 in The Genetics and Biology ofDrosophila vol. 3b, edited by M. Ashburner, H.L. Carson & T.N. Thompson, Jr., Academic Press, New York.

    Google Scholar 

  • Tominaga, H., K. Arai & S. Narise, 1989. Single amino acid substitutions in sn-glycerol-3-phosphate dehydrogenase allozymes fromDrosophila virilis. Experientia 45: 312–314.

    PubMed  Google Scholar 

  • Tominaga, H., T. Shiba & S. Narise, 1992. Structure ofDrosophila virilis glycerol-3-phosphate dehydrogenase gene and a comparison with theDrosophila melanogaster gene. Biochim. Biophys. Acta 1131: 233–238.

    PubMed  Google Scholar 

  • Treier, M., C. Pfeifle & D. Tautz, 1989. Comparison of the gap segmentation gene hunchback betweenDrosophila melanogaster andDrosophila virilis reveals novel modes of evolutionary change. EMBO J. 8: 1517–1525.

    PubMed  Google Scholar 

  • Tsuno, K., 1991. An analysis of long base sequences in the 2nd intron ofDrosophila αGpdh. Meikai Univ. J. Arts and Sci. 3: 19–26.

    Google Scholar 

  • von Kalm, L., J. Weaver, J. DeMarco, R.J. MacIntyre & D.T. Sullivan 1989. Structural characterization of the α-glycerol-3-phosphate dehydrogenase-encoding gene ofDrosophila melanogaster. PNAS U.S.A. 86: 5020–5024.

    Google Scholar 

  • White III, H.B. & N.O. Kaplan, 1972. Separate physiological roles for two isozymes of pyridine nucleotide-linked glycerol-3-phosphate dehydrogenase in chicken. J. Mol. Evol. 1: 158–172.

    Google Scholar 

  • Yao, K-M. & K. White, 1991. Organization analysis of elav gene and functional analysis of ELAV protein ofDrosophila melanogaster andDrosophila virilis. Mol. Cell. Biol. 11: 2994–3000.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nucleotide sequences for theGpdh gene ofD. lummei, D. novamexicana, D. a. americana, D. a. texana andD. ezoana have been submitted to GenBank with accession numbers D50087, D50088, D50089, D50090 and D50091.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tominaga, H., Narise, S. Sequence evolution of theGpdh gene in theDrosophila virilis species group. Genetica 96, 293–302 (1995). https://doi.org/10.1007/BF01439583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01439583

Key words

Navigation